Research

Scientists discover secret to promising new cancer drug

Australian researchers have resolved a mystery about how a promising new class of anti-cancer drugs, called nutlins, work - paving the way for improving the future of cancer treatment. Nutlins, which are in early clinical trials for treating blood cancers, sparked interest worldwide for their ability to stop cancer growth by activating the body's natural cancer-suppressing mechanism - a gene called P53 - while at the same time avoiding some of the damaging effects of chemotherapy. However, until now, it was unknown whether nutlins were killing the cancerous cells, or just suppressing them temporarily.

Dr Liz Valente, Dr Brandon Aubrey, Professor Andreas Strasser and colleagues from the Walter and Eliza Hall Institute have found the answer to the long-standing question of how nutlins work by discovering that nutlins cause cancer cells to self-destruct and not just go to 'sleep'.

The research, published in the journal Cell Reports, revealed that nutlins activated P53 to trigger programmed cell death (apoptosis) of blood cancer cells. This was identified through the presence of a protein called PUMA.

Dr Aubrey, who is also a clinical haematologist at The Royal Melbourne Hospital, said the discovery not only reinforced that nutlins were a promising new treatment for blood cancer, but also that it provided invaluable information for a more tailored approach to patient care.

"Our findings will help identify which patients are most likely to benefit from nutlins and which types of cancers are most likely to respond to nutlins as a treatment," Dr Aubrey said.

"Understanding in detail how the drugs work will help in the design of better clinical trials and bring the world closer to more precise and personalised medical treatments for cancer."

Professor Strasser said previous research around P53 showed the gene was like a natural 'guardian' of healthy cells in the body and was a major barrier to developing cancer.

"When functioning properly, P53 is activated in response to early cancerous changes in the cell," Professor Strasser said. "P53 acts by either halting the cell while repairs are made or by forcing the cell to die if it cannot be repaired.

"Without the 'help' of P53, a damaged cell can be allowed to multiply, leading to cancer development. P53 lies dormant in many types of cancer - that do not have mutations in P53 - and the nutlins work through re-awakening its activity."

Professor Strasser said knowing more information about what nutlins were capable of by identifying how nutlins were activating P53 to trigger cell death in cancers was a critical step towards developing more sophisticated treatments for cancer.

"By understanding how nutlins are killing cancer cells, we can begin to formulate their best possible use, including choosing the best partner drugs to combine the nutlins with," Professor Strasser said.

Dr Aubrey is a PhD student at the Walter and Eliza Hall Institute enrolled through The University of Melbourne's Department of Medical Biology. Professor Strasser is a joint division head in the Molecular Genetics of Cancer division at the Walter and Eliza Hall Institute.

The research was supported by the National Health and Medical Research Council, the Leukemia and Lymphoma Society, Cancer Council Victoria, the Leukaemia Foundation of Australia, the Victorian Cancer Agency and the Victorian Government Operational Infrastructure Support Scheme.

The Walter and Eliza Hall Institute is the research powerhouse of the Victorian Comprehensive Cancer Centre, an alliance of leading Victorian hospitals and research centres committed to controlling cancer.

Valente, Liz J. et al.
Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells
Cell Reports, DOI: http://dx.doi.org/10.1016/j.celrep.2016.01.059

Most Popular Now

Boehringer Ingelheim increases acce…

Boehringer Ingelheim is announcing an expansion of its Intellectual Property (IP) enforcement policy. The IP enforcement policy had already been amended in 2007 by an eas...

Read more

AstraZeneca licenses Zurampic to Gr…

AstraZeneca today announced that it has entered into a licensing agreement with Grünenthal GmbH for the exclusive rights to Zurampic (lesinurad) in Europe and Latin Ameri...

Read more

Pfizer presents promising data from…

Pfizer Inc. (NYSE:PFE) today announced encouraging new data from a Phase 1/2 study of lorlatinib, the proposed generic name for PF-06463922, Pfizer's investigational, nex...

Read more

Merck Accelerator expands its reach…

Merck, a leading science and technology company, has started this week the application period for the next round of its Accelerator programs in Darmstadt, Germany, and Na...

Read more

Bayer Science & Education Found…

Applications for the Bayer Science & Education Foundation's international scholarship programs are now being accepted for this year's round. In the academic sector, ambit...

Read more

Merck announces survey results expl…

Merck, a leading science and technology company, today announced survey results of 250 global biopharmaceutical executives on how their companies will manage new risks as...

Read more

AstraZeneca enters commercialisatio…

AstraZeneca today announced it has entered into a commercialisation agreement with Aspen Global Incorporated (AGI), part of the Aspen Group, for rights to its global anae...

Read more

Call for Abstracts: DIA EuroMeeting…

29 - 31 March 2017, Glasgow, UK. The DIA EuroMeeting 2017 provides a platform for experts from all relevant disciplines within the entire healthcare development and acce...

Read more

Promising treatment prospects for i…

In Switzerland alone, more than 5,700 women are diagnosed with breast cancer each year, and almost 1,400 of those affected die of the disease. In many very invasive forms...

Read more

Boehringer Ingelheim and Harvard sc…

Boehringer Ingelheim today announced it has established a research collaboration with the Harvard Stem Cell Institute's - Harvard Fibrosis Network to discover new ways of...

Read more

FDA targets unlawful internet sales…

The U.S. Food and Drug Administration, in partnership with international regulatory and law enforcement agencies, announced that it took action this week against 4,402 we...

Read more

New class of protein could treat ca…

A protein designed by researchers at Georgia State University can effectively target a cell surface receptor linked to a number of diseases, showing potential as a therap...

Read more

Digest World Pharma Newsletter

Subscribe to our weekly Digest World Pharma Newsletter and stay updated on the latest World Pharma News. Subscribe now, it's free!

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]