Scientists discover secret to promising new cancer drug

Australian researchers have resolved a mystery about how a promising new class of anti-cancer drugs, called nutlins, work - paving the way for improving the future of cancer treatment. Nutlins, which are in early clinical trials for treating blood cancers, sparked interest worldwide for their ability to stop cancer growth by activating the body's natural cancer-suppressing mechanism - a gene called P53 - while at the same time avoiding some of the damaging effects of chemotherapy. However, until now, it was unknown whether nutlins were killing the cancerous cells, or just suppressing them temporarily.

Dr Liz Valente, Dr Brandon Aubrey, Professor Andreas Strasser and colleagues from the Walter and Eliza Hall Institute have found the answer to the long-standing question of how nutlins work by discovering that nutlins cause cancer cells to self-destruct and not just go to 'sleep'.

The research, published in the journal Cell Reports, revealed that nutlins activated P53 to trigger programmed cell death (apoptosis) of blood cancer cells. This was identified through the presence of a protein called PUMA.

Dr Aubrey, who is also a clinical haematologist at The Royal Melbourne Hospital, said the discovery not only reinforced that nutlins were a promising new treatment for blood cancer, but also that it provided invaluable information for a more tailored approach to patient care.

"Our findings will help identify which patients are most likely to benefit from nutlins and which types of cancers are most likely to respond to nutlins as a treatment," Dr Aubrey said.

"Understanding in detail how the drugs work will help in the design of better clinical trials and bring the world closer to more precise and personalised medical treatments for cancer."

Professor Strasser said previous research around P53 showed the gene was like a natural 'guardian' of healthy cells in the body and was a major barrier to developing cancer.

"When functioning properly, P53 is activated in response to early cancerous changes in the cell," Professor Strasser said. "P53 acts by either halting the cell while repairs are made or by forcing the cell to die if it cannot be repaired.

"Without the 'help' of P53, a damaged cell can be allowed to multiply, leading to cancer development. P53 lies dormant in many types of cancer - that do not have mutations in P53 - and the nutlins work through re-awakening its activity."

Professor Strasser said knowing more information about what nutlins were capable of by identifying how nutlins were activating P53 to trigger cell death in cancers was a critical step towards developing more sophisticated treatments for cancer.

"By understanding how nutlins are killing cancer cells, we can begin to formulate their best possible use, including choosing the best partner drugs to combine the nutlins with," Professor Strasser said.

Dr Aubrey is a PhD student at the Walter and Eliza Hall Institute enrolled through The University of Melbourne's Department of Medical Biology. Professor Strasser is a joint division head in the Molecular Genetics of Cancer division at the Walter and Eliza Hall Institute.

The research was supported by the National Health and Medical Research Council, the Leukemia and Lymphoma Society, Cancer Council Victoria, the Leukaemia Foundation of Australia, the Victorian Cancer Agency and the Victorian Government Operational Infrastructure Support Scheme.

The Walter and Eliza Hall Institute is the research powerhouse of the Victorian Comprehensive Cancer Centre, an alliance of leading Victorian hospitals and research centres committed to controlling cancer.

Valente, Liz J. et al.
Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells
Cell Reports, DOI: http://dx.doi.org/10.1016/j.celrep.2016.01.059

Most Popular Now

FDA approves drug to treat ALS

The U.S. Food and Drug Administration today approved Radicava (edaravone) to treat patients with amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig's...

Read more

FDA approves first cancer treatment for any solid …

The U.S. Food and Drug Administration today granted accelerated approval to a treatment for patients whose cancers have a specific genetic feature (biomarker). This is th...

Read more

Sanofi and Regeneron announce FDA Approval of Kevz…

Sanofi and Regeneron Pharmaceuticals, Inc. have announced the U.S. Food and Drug Administration (FDA) approval of Kevzara® (sarilumab) for the treatment of adult patients...

Read more

AstraZeneca marks a key milestone with the ‘toppin…

AstraZeneca marks a key milestone in its successful move to Cambridge, UK, with the 'topping out' of its new, state-of-the-art, strategic R&D centre and global corporate ...

Read more

FDA approves first treatment for a form of Batten …

The U.S. Food and Drug Administration today approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved ...

Read more

Abbott announces CE Mark and first use of the worl…

Abbott (NYSE: ABT) today announced CE Mark and first use of the new Confirm RxTM Insertable Cardiac Monitor (ICM), the world's first smartphone compatible ICM that will h...

Read more

Imfinzi significantly reduces the risk of disease …

AstraZeneca and MedImmune, its global biologics research and development arm, today announced positive results for the Phase III PACIFIC trial, a randomised, double-blind...

Read more

Antibiotic doxycycline may offer hope for treatmen…

A study published in the journal Scientific Reports suggests that doxycycline, an antibiotic used for over half a century against bacterial infections, can be prescribed ...

Read more

Novartis exercises exclusive option agreement with…

Novartis announced today that it has notified Conatus Pharmaceuticals Inc., of its exercise of the option to an exclusive license for the global development and commercia...

Read more

England's Cancer Drugs Fund 'failed to deliver mea…

Analysis of the drugs that were approved for use by the NHS Cancer Drugs Fund (CDF) in England has shown that the fund was not good value for patients and society and may...

Read more

High levels of exercise linked to nine years of le…

Despite their best efforts, no scientist has ever come close to stopping humans from aging. Even anti-aging creams can't stop Old Father Time. But new research from Brigh...

Read more

Vitamin A deficiency is detrimental to blood stem …

Many specialized cells, such as in the skin, gut or blood, have a lifespan of only a few days. Therefore, steady replenishment of these cells is indispensable. They arise...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]