Scientists discover secret to promising new cancer drug

Australian researchers have resolved a mystery about how a promising new class of anti-cancer drugs, called nutlins, work - paving the way for improving the future of cancer treatment. Nutlins, which are in early clinical trials for treating blood cancers, sparked interest worldwide for their ability to stop cancer growth by activating the body's natural cancer-suppressing mechanism - a gene called P53 - while at the same time avoiding some of the damaging effects of chemotherapy. However, until now, it was unknown whether nutlins were killing the cancerous cells, or just suppressing them temporarily.

Dr Liz Valente, Dr Brandon Aubrey, Professor Andreas Strasser and colleagues from the Walter and Eliza Hall Institute have found the answer to the long-standing question of how nutlins work by discovering that nutlins cause cancer cells to self-destruct and not just go to 'sleep'.

The research, published in the journal Cell Reports, revealed that nutlins activated P53 to trigger programmed cell death (apoptosis) of blood cancer cells. This was identified through the presence of a protein called PUMA.

Dr Aubrey, who is also a clinical haematologist at The Royal Melbourne Hospital, said the discovery not only reinforced that nutlins were a promising new treatment for blood cancer, but also that it provided invaluable information for a more tailored approach to patient care.

"Our findings will help identify which patients are most likely to benefit from nutlins and which types of cancers are most likely to respond to nutlins as a treatment," Dr Aubrey said.

"Understanding in detail how the drugs work will help in the design of better clinical trials and bring the world closer to more precise and personalised medical treatments for cancer."

Professor Strasser said previous research around P53 showed the gene was like a natural 'guardian' of healthy cells in the body and was a major barrier to developing cancer.

"When functioning properly, P53 is activated in response to early cancerous changes in the cell," Professor Strasser said. "P53 acts by either halting the cell while repairs are made or by forcing the cell to die if it cannot be repaired.

"Without the 'help' of P53, a damaged cell can be allowed to multiply, leading to cancer development. P53 lies dormant in many types of cancer - that do not have mutations in P53 - and the nutlins work through re-awakening its activity."

Professor Strasser said knowing more information about what nutlins were capable of by identifying how nutlins were activating P53 to trigger cell death in cancers was a critical step towards developing more sophisticated treatments for cancer.

"By understanding how nutlins are killing cancer cells, we can begin to formulate their best possible use, including choosing the best partner drugs to combine the nutlins with," Professor Strasser said.

Dr Aubrey is a PhD student at the Walter and Eliza Hall Institute enrolled through The University of Melbourne's Department of Medical Biology. Professor Strasser is a joint division head in the Molecular Genetics of Cancer division at the Walter and Eliza Hall Institute.

The research was supported by the National Health and Medical Research Council, the Leukemia and Lymphoma Society, Cancer Council Victoria, the Leukaemia Foundation of Australia, the Victorian Cancer Agency and the Victorian Government Operational Infrastructure Support Scheme.

The Walter and Eliza Hall Institute is the research powerhouse of the Victorian Comprehensive Cancer Centre, an alliance of leading Victorian hospitals and research centres committed to controlling cancer.

Valente, Liz J. et al.
Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells
Cell Reports, DOI: http://dx.doi.org/10.1016/j.celrep.2016.01.059

Most Popular Now

New analysis shows Novartis Entresto improves glyc…

Novartis has announced results of a new post-hoc analysis in a subgroup of patients with reduced ejection fraction heart failure (HFrEF) and diabetes suggesting that Entr...

Read more

Mutual Recognition promises new framework for phar…

The United States and the European Union (EU) completed an exchange of letters to amend the Pharmaceutical Annex to the 1998 U.S.-EU Mutual Recognition Agreement. Under t...

Read more

Novartis' Cosentyx shows almost all psoriasis pati…

Novartis has announced a new analysis showing that moderate-to-severe psoriasis patients treated with Cosentyx® (secukinumab) rapidly regain clear or almost clear skin (P...

Read more

Potential drug candidates halt prostate and breast…

Scientists on the Florida campus of The Scripps Research Institute (TSRI) have designed two new drug candidates to target prostate and triple negative breast cancers. The...

Read more

Scientists stimulate immune system, stop cancer gr…

Researchers at the University of Illinois at Chicago report that increasing expression of a chemical cytokine called LIGHT in mice with colon cancer activated the immune ...

Read more

Johnson & Johnson completes acquisition of Abb…

Johnson & Johnson (NYSE: JNJ) has completed the acquisition of Abbott Medical Optics (AMO), a wholly-owned subsidiary of Abbott. The all-cash $4.325 billion acquisition w...

Read more

New England Journal of Medicine publishes long-ter…

In 2001 the U.S. Food and Drug Administration granted priority review for imatinib mesylate, sold under the name Gleevec®*, as an oral therapy for patients with chronic m...

Read more

Bristol-Myers Squibb expands focus on precision me…

Bristol-Myers Squibb Company (NYSE: BMY) announced its equity investment and plans for a research collaboration with GRAIL Inc., a life sciences company whose mission is ...

Read more

Volkswagen's excess emissions will lead to 1,200 p…

In September 2015, the German Volkswagen Group, the world's largest car producer, admitted to having installed "defeat devices" in 11 million diesel cars sold worldwide b...

Read more

MedImmune and Sanofi Pasteur form alliance to deve…

MedImmune, the global biologics research and development arm of AstraZeneca, and Sanofi Pasteur, the vaccines division of Sanofi, have announced an agreement to develop a...

Read more

FDA approves once-daily Qtern (dapagliflozin and s…

AstraZeneca today announced that the US Food and Drug Administration (FDA) has approved once-daily Qtern (10mg dapagliflozin and 5mg saxagliptin) for the treatment of typ...

Read more

Cooking at home tonight? It's likely cheaper and h…

Researchers from the University of Washington School of Public Health have been peeking into kitchens - via interviews - for years now. They've just published results sho...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]