'Beiging' white fat cells to fight diabetes

Researchers are getting closer to learning how to turn white fat cells into brown fat cells, in a process called "beiging," to bring down blood sugar levels and fight diabetes. The team, led by Joseph Baur, PhD, an assistant professor of Physiology in the Perelman School of Medicine at the University of Pennsylvania published their findings this month in the journal Diabetes.

"Beiging of white fat could be harnessed to fight diabetes by burning excess calories to cause a decrease in blood sugar," Baur said. "Our work suggests that activation of the mTOR pathway plays a critical role in this process." Induction of beige fat cells is considered a promising strategy to combat obesity because of this cell type's ability to metabolize glucose and lipids, dissipating the resulting energy as heat.

Brown and white fat cells, or adipocytes, play different roles in the body. While white adipocytes store energy as large fat droplets, brown adipocytes contain smaller fat droplets and are specialized to burn fat to produce heat. To do this brown adipocytes are packed with the powerhouses called mitochondria that contain iron, which gives them their brown color. In fact, babies are born with brown fat along the upper back and shoulders to keep warm.

In adult humans, the recent discovery of brown fat "depots" is also associated with lower body weight. Brown-like fat cells, called beige adipocytes, also appear within white fat deposits in response to cold and other signals. The energy balance within the body is influenced by brown and beige adipocytes, which are stimulated into action by cold temperatures and other signals to burn fat and carbohydrates.

The primary tool used in these studies was rapamycin, a drug that inhibits the protein mTOR (mechanistic target of rapamycin), which can be found in two distinct protein complexes. It was first discovered as a byproduct of Streptomycin hygroscopicus, a bacterium found in a soil sample from Easter Island, an island also known as Rapa Nui, hence the name. Rapamycin is currently used as an immunosuppressant in organ transplant, but has recently attracted attention when it was discovered to extend lifespan in mice.

Interestingly, in 2012, Baur's lab discovered that rapamycin also causes insulin resistance due to its ability to inhibit both arms of the mTOR signaling pathway controlled by the protein complexes mTORC1 and mTORC2. They showed in an animal model that these two arms could, in principle, be separated to dissect which pathway controls longevity versus endocrine effects.

In terms of physiology, mTOR signaling is involved in the control of blood sugar and cholesterol levels, and its inhibition increases the risk of diabetes. While previous studies suggested that mTORC1 inhibition would promote beiging of white fat cells, Baur's present work supports the notion that mTORC1 activity is actually required for cold-induced beiging of white fat cells. If activating mTORC1 directly can bring about the same result, then this approach could potentially be applied to combat diabetes.

In the Diabetes study, the team shows that rapamycin blocks the ability of cold or drugs that activate a specific neurotransmitter pathway to induce the appearance of beige fat cells. Accordingly, rapamycin-treated mice are cold-intolerant and fail to maintain body temperature and weight when moved to a colder environment.

The findings demonstrate a positive role for mTORC1 in the recruitment of beige fat cells to white fat depots, which could explain some of the negative metabolic effects of mTOR inhibition.

"Our study highlights the complex interconnection between mTOR signaling and metabolism," said first author Cassie Tran, PhD, a postdoctoral fellow in the Baur lab. "It will be critical in moving forward to determine the specific targets downstream of mTOR that are causing the negative metabolic effects in order to create better drugs and one day drugs that might also extend heathspan. The discovery of a critical signaling pathway for beige-fat formation also suggests the opportunity to target this pathway to therapeutically increase the number of heat-producing cells in obese or diabetic patients."

Other co-authors include Sarmistha Mukherjee, David W. Frederick, Megan Kissig, James G. Davis, and Patrick Seale, all from Penn.

This work was supported by grants from the National Institutes of Health (R01 AG043483, R01 DK098656, T32 DK07314, K99/R00, AG041765).

Most Popular Now

Top 20 World Pharma News of 2016

Look back at the most prominent moments from the year 2016. We are proud to announce the 20 most popular World Pharma News from 2016, the most commonly viewed news accord...

Read more

New precision medicine tool helps optimize cancer …

Columbia University Medical Center (CUMC) researchers have created a computational tool that can rapidly predict which genes are implicated in an individual's cancer and ...

Read more

Roche's emicizumab for haemophilia A meets primary…

Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that the primary endpoint has been met for the phase III HAVEN 1 study evaluating emicizumab prophylaxis in people 12 y...

Read more

Sanofi and Boehringer Ingelheim confirm Closing of…

Sanofi and Boehringer Ingelheim confirmed that the strategic transaction signed in June 2016, which consists of an exchange of Sanofi's animal health business (Merial) an...

Read more

Diabetes, heart disease, and back pain dominate US…

Just 20 conditions make up more than half of all spending on health care in the United States, according to a new comprehensive financial analysis that examines spending ...

Read more

FDA approves first drug for spinal muscular atroph…

The U.S. Food and Drug Administration has approved Spinraza (nusinersen), the first drug approved to treat children and adults with spinal muscular atrophy (SMA), a rare ...

Read more

Novartis invests in next generation therapies to r…

Novartis announced today a collaboration and option agreement with Ionis Pharmaceuticals, Inc. and its affiliate Akcea Therapeutics, Inc., to license two novel treatments...

Read more

Topical treatment activates immune system to clear…

A combination of two FDA-approved drugs - a topical chemotherapy and an immune-system-activating compound - was able to rapidly clear actinic keratosis lesions from patie...

Read more

Vaccine shows promising results for early-stage br…

Deregulation and inhibition of the immune system contributes to cancer development. Many therapeutic strategies aim to re-stimulate the immune system to recognize cancer ...

Read more

Bristol-Myers Squibb announces immunotherapy clini…

Bristol-Myers Squibb Company (NYSE:BMY) today announced a new clinical research collaboration with Janssen Biotech, Inc. to evaluate the combination of Bristol-Myers Squi...

Read more

Anti-aging therapies targeting senescent cells: Fa…

It's an exciting time to be an elderly mouse. Researchers believe that by removing senescent cells (cells with a persistent damage response), which naturally accumulate w...

Read more

Novo Nordisk and Glooko partner to develop digital…

Novo Nordisk and Glooko today announced that the two companies will work together to deliver jointly-developed and branded digital health solutions for people with diabet...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]