Mental fog with tamoxifen is real; URMC finds possible antidote

A team from the University of Rochester Medical Center has shown scientifically what many women report anecdotally: that the breast cancer drug tamoxifen is toxic to cells of the brain and central nervous system, producing mental fogginess similar to "chemo brain." However, in the Journal of Neuroscience, researchers also report they've discovered an existing drug compound that appears to counteract or rescue brain cells from the adverse effects of the breast cancer drug.

Corresponding author Mark Noble, Ph.D., professor of Biomedical Genetics and director of the UR Stem Cell and Regenerative Medicine Institute, said it's exciting to potentially be able to prevent a toxic reaction to one of the oldest and most widely used breast cancer medications on the market. Although tamoxifen is relatively benign compared to most cancer treatments, it nonetheless produces troubling side effects in a subset of the large number of people who take it.

By studying tamoxifen's impact on central nervous system cell populations and then screening a library of 1,040 compounds already in clinical use or clinical trials, his team identified a substance known as AZD6244, and showed that it essentially eliminated tamoxifen-induced killing of brain cells in mice.

"As far as I know, no one else has discovered an agent that singles out and protects brain and central nervous system cells while also not protecting cancer cells," Noble said. "This creates a whole new paradigm; it's where we need to go."

The research is the result of two separate but related projects from Noble's lab. One investigates the science underlying a condition known as "chemo brain," and another is looking at how to exploit tamoxifen's attributes for use in other types of cancer besides early-stage, less-aggressive breast cancer. (The drug is a type of hormonal therapy, which works by stopping the growth of estrogen-sensitive tumors.)

In the Journal of Neuroscience paper, Noble's team first identified central nervous system (CNS) cells that are most vulnerable to tamoxifen toxicity. Chief among these were oligodendrocyte-type 2 astrocyte progenitor cells (O-2A/OPCs), cells that are essential for making the insulating sheaths (called myelin) required for nerve cells to work properly. Exposure to clinically relevant levels of tamoxifen for 48 hours killed more than 75 percent of these cells.

In earlier work, while studying the biology of the cognitive difficulties that linger in some people being treated for cancer, Noble and colleagues discovered that 5-fluorouracil, (cisplatin, cytarabine, carmustine), and multiple other types of chemotherapy, damages populations of stem cells in the CNS. Published in the Journal of Biology in 2006 and 2008, these studies pioneered analysis of the biological foundations of chemo brain.

"It's critical to find safe treatments that can rescue the brain from impairment," Noble said, "because despite increasing awareness and research in this area, some people continue to endure short-term memory loss, mental cloudiness, and trouble concentrating. For some patients the effects wear off over time, but others experience symptoms that can lead to job loss, depression, and other debilitating events."

Noble's lab, led by post-doctoral fellow Hsing-Yu Chen, Ph.D., identified 27 drugs that protected O-2A/OPCs from the effects of tamoxifen. Further testing resulted in singling out AZD6244, by other laboratories as a potential cancer therapy.

In mice co-treated with tamoxifen plus AZD6244, cell death in the corpus callosum, the largest white matter (myelinated) structure in the brain, was prevented, the paper reported. Meanwhile, several national clinical trials are testing the safety and effectiveness of AZD6244 in treating multiple cancers, from breast and colon to melanoma and lung.

Researchers were also optimistic about finding that while AZD6244 protected brain cells, it did not also protect cancer cells. New drug compounds have greater value if they do not compromise the effects of existing treatments, and in this case, Noble said, the experiments in his laboratory agreed with studies by other research groups, who found that the combined use of AZD6244 and chemotherapy enhances targeting of cancer cells.

In future work, Noble's group plans to identify the dosage of AZD6244 that provides maximum protection and minimum disruption to differentiating brain cells. Their research was supported by the U.S. Department of Defense, National Institutes of Health, Susan Komen Race for the Cure, and the Carlson Stem Cell Fund.

This is the second tamoxifen-related study to come from Noble's lab in 2013. In April they showed in pre-clinical research they could leverage the drug's various cellular activities so that it might work on more aggressive triple-negative breast cancer. In the journal EMBO Molecular Medicine, Noble and Chen also reported finding an experimental compound that enhances tamoxifen's ability to work in this new way.

Most Popular Now

Merck invests € 250 million in production value ch…

Merck, a leading science and technology company, today inaugurated its € 170 million Nantong pharmaceutical plant, which is dedicated to producing high-quality pharmaceut...

Read more

Roche launches imCORE, a global network of cancer …

Roche (SIX: RO, ROG; OTCQX: RHHBY) has launched the global cancer immunotherapy Centers of Research Excellence (imCORE™) Network. This network brings together many of the...

Read more

New research shows promise for immunotherapy as HI…

Immunotherapy has revolutionized treatment options in oncology, neurology, and many infectious diseases and now there is fresh hope that the same method could be used to ...

Read more

15th Annual eyeforpharma Philadelphia 2017

20 - 21 April 2017, Philadelphia, USA. It's eyeforpharma Philadelphia's 15th year; already the largest, most senior and most influential forum for commercial pharma exec...

Read more

Pancreatic cancer set to become third biggest canc…

The number of deaths from pancreatic cancer will overtake breast cancer mortality rates in the EU in 2017, a study has found. The findings, recently presented at UEG Week...

Read more

Merck wins R&D 100 Award for top invention

Merck, a leading science and technology company, received a prestigious R&D 100 Award for its Sanger Arrayed Lentiviral CRISPR Libraries - the first of its kind CRISPR li...

Read more

Regorafenib from Bayer submitted to health authori…

Bayer has announced the submission of applications to extend the marketing authorization for its oral multi-kinase inhibitor regorafenib in the U.S., Japan and Europe, fo...

Read more

Researchers discover way to inhibit major cancer g…

Researchers at the University of Illinois at Chicago have identified a new way to block the action of genetic mutations found in nearly 30 percent of all cancers. Mutatio...

Read more

Genetically engineering disease-fighting cells

The human body produces T cells to recognize and fight disease. Each T cell has a unique T cell receptor (or TCR) on its surface that surveils small fragments of proteins...

Read more

New European study highlights differing priorities…

Results from a survey analysing the prescribing behaviour of 500 European physicians treating patients with advanced non-small cell lung cancer (NSCLC) have been publishe...

Read more

Benzodiazepine and related drug use increases hip …

The use of benzodiazepines and related drugs increases the risk of hip fracture by 43% in persons with Alzheimer's disease, according to a new study from the University o...

Read more

Among antidementia drugs, memantine is associated …

A recent study from the University of Eastern Finland shows that among users of antidementia drugs, persons using memantine have the highest risk of pneumonia. The use of...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]