Drug patch treatment sees new breakthrough

An assistant professor with the Virginia Tech - Wake Forest School of Biomedical Engineering has developed a flexible microneedle patch that allows drugs to be delivered directly and fully through the skin. The new patch can quicken drug delivery time while cutting waste, and can likely minimize side-effects in some cases, notable in vaccinations and cancer therapy.

News of the delivery technology was published in a recent issue of the scientific journal, Advanced Materials.

Leading development of the flexible patch was Lissett Bickford, now an assistant professor and researcher of biomedical engineering and the mechanical engineering, both part of the Virginia Tech College of Engineering. Work on the technology was completed while Bickford was a post-doctoral research associate at the University of North Carolina Chapel Hill.

Microneedle patch technology used on the skin has existed for several years, each patch containing an array of hundreds of micron-sized needles that pierce the skin and dissolve, delivering embedded therapeutics. However, because of their rigid chemical makeup, the patches proved difficult in fully piercing into the skin, creating a waste of drug material and a slowed delivery time. Additionally, the patches also have been difficult to produce in bulk; typical fabrication procedures have required centrifugation.

Bickford, with her research team, including Chapel Hill graduate student Katherine A. Moga, were able to develop a new flexible microneedle patch that forms to the skin directly - think a regular household bandage - and then fully pierces the skin and dissolves. Bickford said the softer, more malleable and water-soluble material also allows for more precise control over the shape, size, and composition of the patch, with little to no waste.

The nanoparticle, micro-molding patch is based on Particle Replication In Non-wetting Templates (PRINT for short) technology, developed by University of North Carolina researcher and professor Joseph DeSimone. Unlike other methods for making these patches, the new technology allows for quicker and greater wide-scale production, reducing related costs.

Research and work on the new patch was funded by the National Institutes of Health and Chapel Hill's University Cancer Research Fund. Advanced Materials wrote of the breakthrough in its July issue.

Most Popular Now

FDA approves Roche's OCREVUS™ (ocrelizumab) for re…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced today that the US Food and Drug Administration (FDA) approved OCREVUS™ (ocrelizumab) as the first and only medicine for both ...

Read more

First collaborative definition of patient centrici…

AstraZeneca announced that BMJ Innovations has published the first collaborative definition of patient centricity for the pharmaceutical industry. The definition was co-d...

Read more

High doses of vitamin C to improve cancer treatmen…

Clinical trials found that it is safe to regularly infuse brain and lung cancer patients with 800 - 1000 times the daily recommended amount of vitamin C as a potential st...

Read more

Deep learning algorithm could boost drug developme…

Artificially intelligent algorithms can learn to identify amazingly subtle information, enabling them to distinguish between people in photos or to screen medical images ...

Read more

Bristol-Myers Squibb enters into separate agreemen…

Bristol-Myers Squibb Company (NYSE:BMY) today announced that it has entered into two separate agreements to license BMS-986168, an anti-eTau compound in development for ...

Read more

Tagrisso (osimertinib) receives US FDA full approv…

AstraZeneca today announced that the US Food and Drug Administration (FDA) has granted full approval for Tagrisso (osimertinib) 80mg once-daily tablets, for the treatment...

Read more

A one-two punch hits pancreatic cancer where it hu…

Australian scientists have uncovered a promising new approach to treating pancreatic cancer, by targeting the tissue around the tumour to make it 'softer' and more respon...

Read more

FDA allows marketing of first direct-to-consumer t…

The U.S. Food and Drug Administration today allowed marketing of 23andMe Personal Genome Service Genetic Health Risk (GHR) tests for 10 diseases or conditions. These are ...

Read more

Novartis to strengthen R&D pipeline by in-lice…

Novartis has exercised an option to in-license ECF843 for ophthalmic indications worldwide (outside Europe). The closing of the deal is subject to customary closing condi...

Read more

New drug delivery system shows promise for fightin…

A new cancer-drug delivery system shows the ability to exploit the oxygen-poor areas of solid tumors that make the growths resistant to standard chemotherapy and radiatio...

Read more

Towards a safe and scalable cell therapy for type …

More than 36 million people globally are affected by type 1 diabetes (T1D), a lifelong disorder where insulin producing cells are attacked and destroyed by the immune sys...

Read more

XELJANZ® (tofacitinib citrate) receives marketing …

Pfizer Inc. (NYSE:PFE) announced today that the European Commission (EC) has approved XELJANZ® (tofacitinib citrate) 5 mg twice daily (BID) oral tablets in combination wi...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]