Drug patch treatment sees new breakthrough

An assistant professor with the Virginia Tech - Wake Forest School of Biomedical Engineering has developed a flexible microneedle patch that allows drugs to be delivered directly and fully through the skin. The new patch can quicken drug delivery time while cutting waste, and can likely minimize side-effects in some cases, notable in vaccinations and cancer therapy.

News of the delivery technology was published in a recent issue of the scientific journal, Advanced Materials.

Leading development of the flexible patch was Lissett Bickford, now an assistant professor and researcher of biomedical engineering and the mechanical engineering, both part of the Virginia Tech College of Engineering. Work on the technology was completed while Bickford was a post-doctoral research associate at the University of North Carolina Chapel Hill.

Microneedle patch technology used on the skin has existed for several years, each patch containing an array of hundreds of micron-sized needles that pierce the skin and dissolve, delivering embedded therapeutics. However, because of their rigid chemical makeup, the patches proved difficult in fully piercing into the skin, creating a waste of drug material and a slowed delivery time. Additionally, the patches also have been difficult to produce in bulk; typical fabrication procedures have required centrifugation.

Bickford, with her research team, including Chapel Hill graduate student Katherine A. Moga, were able to develop a new flexible microneedle patch that forms to the skin directly - think a regular household bandage - and then fully pierces the skin and dissolves. Bickford said the softer, more malleable and water-soluble material also allows for more precise control over the shape, size, and composition of the patch, with little to no waste.

The nanoparticle, micro-molding patch is based on Particle Replication In Non-wetting Templates (PRINT for short) technology, developed by University of North Carolina researcher and professor Joseph DeSimone. Unlike other methods for making these patches, the new technology allows for quicker and greater wide-scale production, reducing related costs.

Research and work on the new patch was funded by the National Institutes of Health and Chapel Hill's University Cancer Research Fund. Advanced Materials wrote of the breakthrough in its July issue.

Most Popular Now

Roche launches imCORE, a global network of cancer …

Roche (SIX: RO, ROG; OTCQX: RHHBY) has launched the global cancer immunotherapy Centers of Research Excellence (imCORE™) Network. This network brings together many of the...

Read more

15th Annual eyeforpharma Philadelphia 2017

20 - 21 April 2017, Philadelphia, USA. It's eyeforpharma Philadelphia's 15th year; already the largest, most senior and most influential forum for commercial pharma exec...

Read more

Merck wins R&D 100 Award for top invention

Merck, a leading science and technology company, received a prestigious R&D 100 Award for its Sanger Arrayed Lentiviral CRISPR Libraries - the first of its kind CRISPR li...

Read more

Benzodiazepine and related drug use increases hip …

The use of benzodiazepines and related drugs increases the risk of hip fracture by 43% in persons with Alzheimer's disease, according to a new study from the University o...

Read more

Among antidementia drugs, memantine is associated …

A recent study from the University of Eastern Finland shows that among users of antidementia drugs, persons using memantine have the highest risk of pneumonia. The use of...

Read more

World of viruses uncovered

A groundbreaking study of the virosphere of the most populous animals - those without backbones such as insects, spiders and worms and that live around our houses - has u...

Read more

Boehringer Ingelheim and China Southeast Universit…

Boehringer Ingelheim and China Southeast University Institute of Life Sciences have announced the start of a joint research project to develop new treatment approaches fo...

Read more

Smart patch releases blood thinners as needed

An interdisciplinary team of researchers has developed a smart patch designed to monitor a patient's blood and release blood-thinning drugs as needed to prevent the occur...

Read more

Novartis acquires Selexys Pharmaceuticals Corporat…

Novartis today announced it has acquired Selexys Pharmaceuticals Corporation, a company specializing in development of therapeutics in certain hematologic and inflammator...

Read more

Novo Nordisk expands programme to reach 20,000 chi…

Today, Novo Nordisk announced a four-year extension of its Changing Diabetes® in Children programme which provides access to diabetes care and free insulin to children wi...

Read more

IBM and Pfizer to accelerate immuno-oncology resea…

IBM (NYSE: IBM) Watson Health and Pfizer Inc. (NYSE: PFE) have announced a collaboration that will utilize IBM Watson for Drug Discovery to help accelerate Pfizer's resea...

Read more

Greater efforts are needed to encourage patients t…

In a review of published studies addressing patients' perceptions and factors influencing their reporting of adverse drug reactions, most patients were not aware of repor...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]