Research

Drug patch treatment sees new breakthrough

An assistant professor with the Virginia Tech - Wake Forest School of Biomedical Engineering has developed a flexible microneedle patch that allows drugs to be delivered directly and fully through the skin. The new patch can quicken drug delivery time while cutting waste, and can likely minimize side-effects in some cases, notable in vaccinations and cancer therapy.

News of the delivery technology was published in a recent issue of the scientific journal, Advanced Materials.

Leading development of the flexible patch was Lissett Bickford, now an assistant professor and researcher of biomedical engineering and the mechanical engineering, both part of the Virginia Tech College of Engineering. Work on the technology was completed while Bickford was a post-doctoral research associate at the University of North Carolina Chapel Hill.

Microneedle patch technology used on the skin has existed for several years, each patch containing an array of hundreds of micron-sized needles that pierce the skin and dissolve, delivering embedded therapeutics. However, because of their rigid chemical makeup, the patches proved difficult in fully piercing into the skin, creating a waste of drug material and a slowed delivery time. Additionally, the patches also have been difficult to produce in bulk; typical fabrication procedures have required centrifugation.

Bickford, with her research team, including Chapel Hill graduate student Katherine A. Moga, were able to develop a new flexible microneedle patch that forms to the skin directly - think a regular household bandage - and then fully pierces the skin and dissolves. Bickford said the softer, more malleable and water-soluble material also allows for more precise control over the shape, size, and composition of the patch, with little to no waste.

The nanoparticle, micro-molding patch is based on Particle Replication In Non-wetting Templates (PRINT for short) technology, developed by University of North Carolina researcher and professor Joseph DeSimone. Unlike other methods for making these patches, the new technology allows for quicker and greater wide-scale production, reducing related costs.

Research and work on the new patch was funded by the National Institutes of Health and Chapel Hill's University Cancer Research Fund. Advanced Materials wrote of the breakthrough in its July issue.

Most Popular Now

New antibiotic Zavicefta approved i…

AstraZeneca today announced that the European Commission (EC) has granted marketing authorisation for Zavicefta (ceftazidime-avibactam, previously known as CAZ AVI), a ne...

Read more

Novo Nordisk and Aarhus University …

Novo Nordisk and Aarhus University's Science and Technology faculty today signed a collaboration agreement to strengthen protein technology research and development. Unde...

Read more

AstraZeneca enters licensing agreem…

AstraZeneca today announced that it has entered into agreements that support its strategic focus on three main therapy areas; Respiratory, Inflammation and Autoimmunity, ...

Read more

Novartis adds bispecific antibodies…

Today Novartis announced that it has entered into a collaboration and licensing agreement with Xencor for the development of bispecific antibodies for treating cancer. Th...

Read more

Bristol-Myers Squibb and PsiOxus Th…

Bristol-Myers Squibb Company (NYSE: BMY) and PsiOxus Therapeutics, Ltd. (PsiOxus) today announced an exclusive clinical collaboration agreement to evaluate the safety, to...

Read more

Bristol-Myers Squibb acquires Cormo…

Bristol-Myers Squibb Company (NYSE:BMY) and Cormorant Pharmaceuticals announced today that Bristol-Myers Squibb has acquired all of the outstanding capital stock of Cormo...

Read more

Sanofi Pasteur signs research agree…

Sanofi and its vaccines global business unit Sanofi Pasteur announced today a Cooperative Research and Development Agreement with the Walter Reed Army Institute of Resear...

Read more

FDA advances Precision Medicine Ini…

In support of the President’s Precision Medicine Initiative, the U.S. Food and Drug Administration has issued two draft guidances that, when finalized, will provide a fle...

Read more

Merck and Pfizer initiate Phase III…

Merck KGaA, Darmstadt, Germany, and Pfizer (NYSE: PFE) have announced the initiation of a Phase III study, JAVELIN Ovarian 100, to evaluate the efficacy and safety of ave...

Read more

Merck commits €1.5 million to the G…

Merck, a leading science and technology company, today announced it would continue to support the advancement of medical science in the field of fertility through the Gra...

Read more

Laboratory drug trials could lead t…

A new drug with the potential to reverse or slow the development of asthma is being tested by researchers at The University of Queensland. Developed by international phar...

Read more

Twisting and turning to target anti…

Researchers are getting closer to understanding how some natural antibiotics work so they can develop drugs that mimic them. A recent review commissioned by the British g...

Read more

Digest World Pharma Newsletter

Subscribe to our weekly Digest World Pharma Newsletter and stay updated on the latest World Pharma News. Subscribe now, it's free!

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]

© World Pharma News 2006 - 2016