Research

Using fat to fight brain cancer

In laboratory studies, Johns Hopkins researchers say they have found that stem cells from a patient's own fat may have the potential to deliver new treatments directly into the brain after the surgical removal of a glioblastoma, the most common and aggressive form of brain tumor.

The investigators say so-called mesenchymal stem cells (MSCs) have an unexplained ability to seek out damaged cells, such as those involved in cancer, and may provide clinicians a new tool for accessing difficult-to-reach parts of the brain where cancer cells can hide and proliferate anew. The researchers say harvesting MSCs from fat is less invasive and less expensive than getting them from bone marrow, a more commonly studied method.

Results of the Johns Hopkins proof-of-principle study are described online in the journal PLOS ONE.

"The biggest challenge in brain cancer is the migration of cancer cells. Even when we remove the tumor, some of the cells have already slipped away and are causing damage somewhere else," says study leader Alfredo Quinones-Hinojosa, M.D., a professor of neurosurgery, oncology and neuroscience at the Johns Hopkins University School of Medicine. "Building off our findings, we may be able to find a way to arm a patient's own healthy cells with the treatment needed to chase down those cancer cells and destroy them. It's truly personalized medicine."

For their test-tube experiments, Quinones-Hinojosa and his colleagues bought human MSCs derived from both fat and bone marrow, and also isolated and grew their own stem cell lines from fat removed from two patients. Comparing the three cell lines, they discovered that all proliferated, migrated, stayed alive and kept their potential as stem cells equally well.

This was an important finding, Quinones-Hinojosa says, because it suggests that a patient's own fat cells might work as well as any to create cancer-fighting cells. The MSCs, with their ability to home in on cancer cells, might be able to act as a delivery mechanism, bringing drugs, nanoparticles or some other treatment directly to the cells. Quinones-Hinojosa cautions that while further studies are under way, it will be years before human trials of MSC delivery systems can begin.

Ideally, he says, if MSCs work, a patient with a glioblastoma would have some adipose tissue (fat) removed — from any number of locations in the body — a short time before surgery. The MSCs in the fat would be drawn out and manipulated in the lab to carry drugs or other treatments. Then, after surgeons removed the brain tumor, they could deposit these treatment-armed cells into the brain in the hopes that they would seek out and destroy the cancer cells.

Currently, standard treatments for glioblastoma are chemotherapy, radiation and surgery, but even a combination of all three rarely leads to more than 18 months of survival after diagnosis. Glioblastoma tumor cells are particularly nimble, migrating across the entire brain and establishing new tumors. This migratory capability is thought to be a key reason for the low cure rate of this tumor type.

"Essentially these MSCs are like a 'smart' device that can track cancer cells," Quinones-Hinojosa says.

Quinones-Hinojosa says it's unclear why MSCs are attracted to glioblastoma cells, but they appear to have a natural affinity for sites of damage in the body, such as a wound. MSCs, whether derived from bone marrow or fat, have been studied in animal models to treat trauma, Parkinson's disease, ALS and other diseases.

This research was supported by the National Institutes of Health's National Institute of Neurological Disorders and Stroke (R01-NS070024), the Maryland Stem Cell Research Fund and the Howard Hughes Medical Institute.

Other Johns Hopkins researchers involved in the study include Courtney Pendleton, M.D.; Qian Li, Ph.D.; David A Chesler, M.D., Ph.D.; Kristy Yuan, M.D.; and Hugo Guerrero-Cazares, M.D., Ph.D.

Most Popular Now

Researchers discover potential trea…

Researchers at the Icahn School of Medicine at Mount Sinai say that tiny doses of a cancer drug may stop the raging, uncontrollable immune response to infection that lead...

Read more

Ready. Raise. Rise. Campaign

The Ready. Raise. Rise. campaign encourages everyone to raise and share a flag to salute those who have been touched by cancer, especially patients and caregivers, and le...

Read more

Pfizer reports first-quarter 2016 r…

Pfizer Inc. (NYSE: PFE) reported financial results for first-quarter 2016 and updated certain components of its 2016 financial guidance. Reported revenues totaled $13.0 b...

Read more

AstraZeneca completes acquisition o…

AstraZeneca has completed the acquisition of the core respiratory business of Takeda Pharmaceutical Company Limited ("Takeda"). The agreement, announced in December 2015...

Read more

Research points to a new treatment …

Researchers have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis, pointing to a potential new treatment using drugs previously ...

Read more

Grants4Apps Accelerator 2016: You i…

The Grants4Apps (G4A) Accelerator developed by Bayer invites health IT and technology startups to apply for the program's 2016 edition. This year, Bayer looks primarily i...

Read more

Pfizer awards more than $1 million …

Pfizer Inc. (NYSE:PFE) has awarded a total of more than $1 million in funding to five leading breast cancer advocacy organizations to support projects focused on metastat...

Read more

Why are women less likely to be pre…

Statins are equally effective at decreasing risk of coronary events in men and women, and yet women are less likely to be prescribed these cholesterol-lowering drugs than...

Read more

Bengt Sjöberg donates SEK 2 billion…

Bengt Sjöberg, resident in Hong Kong but originally from Lysekil, Sweden, has founded the Sjöberg Foundation, to which he has donated SEK 2 billion. His hope is that this...

Read more

A faster and cheaper way to produce…

A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol. By expressing the genes involved in the production ...

Read more

Selumetinib granted Orphan Drug Des…

AstraZeneca today announced that the US Food and Drug Administration (FDA) has granted Orphan Drug Designation for the investigational MEK 1/2 inhibitor, selumetinib (AZD...

Read more

UCB, Teva, Novartis, Pfizer and Tra…

2 - 3 May 2016, Philadelphia, USA. The 2016 eyeforpharma Philadelphia Awards saw 22 finalists, with representation from every top 20 pharma, showcase the breadth of in...

Read more

Digest World Pharma Newsletter

Subscribe to our weekly Digest World Pharma Newsletter and stay updated on the latest World Pharma News. Subscribe now, it's free!

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]