The key to heart failure, new therapies on horizon

Some 5.8 million Americans suffer from heart failure, a currently incurable disease. But scientists at Temple University School of Medicine's (TUSM) Center for Translational Medicine have discovered a key biochemical step underlying the condition that could aid the development of new drugs to treat and possibly prevent it.

"Drugs we currently use for heart failure are not very effective," explained lead investigator Walter J. Koch, PhD, Professor and Chairman of the Department of Pharmacology at TUSM, and Director of the Center for Translational Medicine at TUSM. But, he added, "The more we learn about the disease mechanism, the more drug targets we'll find."

That is what Koch and colleagues at Thomas Jefferson University and the University of California, Davis, achieved in their latest study, which appears in the March 5 issue of the online journal PLOS ONE. The report is the first to show that an enzyme called GRK5 (G-protein coupled receptor kinase 5) can gain access to a heart cell's nucleus – its command center, where control of its genes is maintained – by way of a transport mechanism involving calcium and a protein known as calmodulin. Once calcium and calmodulin deliver GRK5 to the nucleus, the enzyme usurps control over specific genes, ultimately causing hypertrophy, in which heart cells grow larger in size. Hypertrophy is a biological hallmark of heart failure.

GRK5 had previously been identified as a key player in maladaptive cardiac hypertrophy, which is the end stage of heart failure, when the heart muscle becomes enlarged and unable to pump enough blood to keep vital organs functioning. While GRK5's ability to get inside the nucleus was known, Koch and colleagues worked to fill in the missing links in its transport mechanism. Those links, they hope, will not only allow them to better understand GRK5's role in causing heart cells to increase in size but also find ways to block that process to more effectively treat heart failure.

The GRK5 enzyme is a unique member of the GRK family, owing to its presence in the nucleus. Its journey begins at the cell membrane, where signals received by a molecule at the cell surface known as a Gq-coupled receptor prompt "escorts" – one of which is calmodulin, as the researchers discovered – to attach to GRK5 and guide it to the nucleus.

The team found that GRK5's transport requires calmodulin after examining different places on the enzyme where various escort molecules attach. They then introduced mutations that altered the attachment sites. Only when calmodulin-binding residues on GRK5 were mutated was the enzyme prevented from reaching the nucleus. Those mutations led to dramatic decreases in nuclear GRK5 levels and corresponding declines in the activity of genes known to drive cardiac hypertrophy. Calmodulin's ability to bind to GRK5 is in turn dependent on calcium. The same results were obtained both in vitro, using human heart muscle cells cultivated under laboratory conditions, and in vivo, in mice.

The team's research also marks a breakthrough in scientists' understanding of the role of neurohormones in hypertrophy. Released by specialized neurons into the bloodstream, neurohormones have long been cited as a cause of heart cell enlargement.

"One of the novel findings to fall out of this paper is that not all hypertrophic signals from neurohormones are the same," Koch explained. "That's something to keep in mind as we move forward."

The next step, according to Koch, is to test the ability of different agents to keep GRK5 out of the nucleus. "We are now discussing a trial on inhibition of another cardiac GRK, GRK2," he said. He cautioned, however, that trials in patients with GRK5 inhibition are years away. First, agents capable of blocking GRK5 transport must be identified and tested in animals.

The work is an important advance for Temple's Center for Translational Medicine. GRK5 enters the pipeline of novel drug targets under investigation by the Center's scientists and clinicians, who share the common goal of coordinating clinical practice and basic research to speed the delivery of new therapies to patients.

"It's another entry into larger, pre-clinical animal studies," Koch said. "Something new to start down the path of translational medicine."

Other researchers contributing to the work include Jessica I. Gold, Jeffrey S. Martini, and Jonathan Hullmann at the Center for Translational Medicine at Thomas Jefferson University; Erhe Gao, J. Kurt Chuprun, Douglas G. Tilley, and Joseph E. Rabinowitz at TUSM; and Julie Bossuyt and Donald M. Bers at the University of California, Davis.

The research was supported by NIH grants P01 HL091799 and P01 HL075443 and by a pre-doctoral Fellowship from the Great Rivers Affiliate of the American Heart Association.

Most Popular Now

Meditation, yoga and vegetarian diet linked to dec…

In a novel controlled clinical trial, participants in a six-day Ayurvedic-based well-being program that featured a vegetarian diet, meditation, yoga and massages experien...

Read more

Abbott to sell Abbott Medical Optics to Johnson …

Abbott (NYSE: ABT) announced today that it will sell Abbott Medical Optics, its vision care business, to Johnson & Johnson for $4.325 billion in cash. Abbott's vision bus...

Read more

Novartis convenes experts to discuss new technolog…

Novartis today opened the 13th International Biotechnology Leadership Camp (BioCamp). Over the course of three days more than 60 selected students from international univ...

Read more

Caffeine and its analogues revert memory deficits …

A study published in the journal Scientific Reports from Nature publishing group, describes the mechanism by which caffeine counteracts age-related cognitive deficits in ...

Read more

Amgen obtains global development and commercial ri…

Amgen (NASDAQ:AMGN) and Boehringer Ingelheim today announced that Amgen has acquired global development and commercial rights from Boehringer Ingelheim for BI 836908 (AMG...

Read more

Vitamin C may boost effectiveness of acute myeloid…

A simple adjustment to patients' therapeutic regimen may improve the effectiveness of the standard epigenetic treatment for myeloid dysplastic syndrome (MDS) and acute my...

Read more

Roche ranked most sustainable healthcare company i…

For the eighth consecutive year, Roche (SIX: RO, ROG; OTCQX: RHHBY) has been recognised as Group Leader in sustainability within the Pharmaceuticals, Biotechnology & Life...

Read more

10th European Medical Information and Communicatio…

29 - 30 November 2016, Berlin, Germany The 10th year of the Annual European Medical Information and Communications Conference is a unique meeting organised by medical in...

Read more

Saniona and Boehringer Ingelheim sign collaboratio…

Boehringer Ingelheim, one of the world's 20 leading pharmaceutical companies, and Saniona, a leading biotech company in the field of ion channel drug discovery, have ente...

Read more

Study shows how Chinese medicine kills cancer cell…

Researchers at the University of Adelaide have shown how a complex mix of plant compounds derived from ancient clinical practice in China - a Traditional Chinese Medicine...

Read more

Benralizumab phase III trials show positive result…

Results from pivotal Phase III trials presented at the European Respiratory Society (ERS) International Congress demonstrated that adding benralizumab to standard-of-care...

Read more

Antibody reduces harmful brain amyloid plaques in …

Although the causes of Alzheimer's disease are still unknown, it is clear that the disease commences with progressive amyloid deposition in the brains of affected persons...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]