Discovery opens door to new drug options for serious diseases

Researchers have discovered how oxidative stress can turn to the dark side a cellular protein that's usually benign, and make it become a powerful, unwanted accomplice in neuronal death. This finding, reported in Proceedings of the National Academy of Sciences, could ultimately lead to new therapeutic approaches to many of the world's debilitating or fatal diseases.

The research explains how one form of oxidative stress called tyrosine nitration can lead to cell death. Through the common link of inflammation, this may relate to health problems ranging from heart disease to chronic pain, spinal injury, cancer, aging, and amyotrophic lateral sclerosis, or Lou Gehrig's disease.

As part of the work, the scientists also identified a specific "chaperone" protein damaged by oxidants, which is getting activated in this spiral of cellular decline and death. This insight will provide a new approach to design therapeutic drugs.

The findings were published by scientists from the Linus Pauling Institute at Oregon State University; Maria Clara Franco and Alvaro Estevez, now at the University of Central Florida; and researchers from several other institutions. They culminate a decade of work.

"These are very exciting results and could begin a major shift in medicine," said Joseph Beckman.

Beckman is an LPI principal investigator, distinguished professor of biochemistry, and director of the OSU Environmental Health Sciences Center. He also last year received the Discovery Award from the Medical Research Foundation of Oregon, given to the leading medical scientist in the state.

"Preventing this process of tyrosine nitration may protect against a wide range of degenerative diseases," Beckman said. "The study shows that drugs could effectively target oxidatively-damaged proteins."

Scientists have known for decades about the general concept of oxidative damage to cells, resulting in neurodegeneration, inflammation and aging. But the latest findings prove that some molecules in a cell are thousands of times more sensitive to attack.

In this case, heat shock protein 90, or HSP90, helps monitor and chaperone as many as 200 necessary cell functions. But it can acquire a toxic function after nitration of a single tyrosine residue.

"It was difficult to believe that adding one nitro group to one protein will make it toxic enough to kill a motor neuron," Beckman said. "But nitration of HSP90 was shown to activate a pro-inflammatory receptor called P2X7. This begins a dangerous spiral that eventually leads to the death of motor neurons."

The very specificity of this attack, however, is part of what makes the new findings important. Drugs that could prevent or reduce oxidative attack on these most vulnerable sites in a cell might have value against a wide range of diseases.

"Most people think of things like heart disease, cancer, aging, liver disease, even the damage from spinal injury as completely different medical issues," Beckman said. "To the extent they can often be traced back to inflammatory processes that are caused by oxidative attack and cellular damage, they can be more similar than different. It could be possible to develop therapies with value against many seemingly different health problems."

Beckman has spent much of his career studying the causes of amyotrophic lateral sclerosis, and this study suggested the processes outlined in this study might be relevant both to that disease and spinal cord injury.

Key to this research were new methods that allowed researchers to genetically engineer nitrotyrosine into HSP90. This allowed scientists to pin down the exact areas of damage, which may be important in the identification of drugs that could affect this process, the researchers said.

This work was supported by the National Institutes of Health, Burke Medical Research Institute, Weill Cornell Medical College, the ALS Association and other agencies.

Most Popular Now

Roche launches imCORE, a global network of cancer …

Roche (SIX: RO, ROG; OTCQX: RHHBY) has launched the global cancer immunotherapy Centers of Research Excellence (imCORE™) Network. This network brings together many of the...

Read more

15th Annual eyeforpharma Philadelphia 2017

20 - 21 April 2017, Philadelphia, USA. It's eyeforpharma Philadelphia's 15th year; already the largest, most senior and most influential forum for commercial pharma exec...

Read more

Merck wins R&D 100 Award for top invention

Merck, a leading science and technology company, received a prestigious R&D 100 Award for its Sanger Arrayed Lentiviral CRISPR Libraries - the first of its kind CRISPR li...

Read more

Benzodiazepine and related drug use increases hip …

The use of benzodiazepines and related drugs increases the risk of hip fracture by 43% in persons with Alzheimer's disease, according to a new study from the University o...

Read more

Among antidementia drugs, memantine is associated …

A recent study from the University of Eastern Finland shows that among users of antidementia drugs, persons using memantine have the highest risk of pneumonia. The use of...

Read more

World of viruses uncovered

A groundbreaking study of the virosphere of the most populous animals - those without backbones such as insects, spiders and worms and that live around our houses - has u...

Read more

Boehringer Ingelheim and China Southeast Universit…

Boehringer Ingelheim and China Southeast University Institute of Life Sciences have announced the start of a joint research project to develop new treatment approaches fo...

Read more

Smart patch releases blood thinners as needed

An interdisciplinary team of researchers has developed a smart patch designed to monitor a patient's blood and release blood-thinning drugs as needed to prevent the occur...

Read more

Novartis acquires Selexys Pharmaceuticals Corporat…

Novartis today announced it has acquired Selexys Pharmaceuticals Corporation, a company specializing in development of therapeutics in certain hematologic and inflammator...

Read more

Novo Nordisk expands programme to reach 20,000 chi…

Today, Novo Nordisk announced a four-year extension of its Changing Diabetes® in Children programme which provides access to diabetes care and free insulin to children wi...

Read more

IBM and Pfizer to accelerate immuno-oncology resea…

IBM (NYSE: IBM) Watson Health and Pfizer Inc. (NYSE: PFE) have announced a collaboration that will utilize IBM Watson for Drug Discovery to help accelerate Pfizer's resea...

Read more

Greater efforts are needed to encourage patients t…

In a review of published studies addressing patients' perceptions and factors influencing their reporting of adverse drug reactions, most patients were not aware of repor...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]