Discovery opens door to new drug options for serious diseases

Researchers have discovered how oxidative stress can turn to the dark side a cellular protein that's usually benign, and make it become a powerful, unwanted accomplice in neuronal death. This finding, reported in Proceedings of the National Academy of Sciences, could ultimately lead to new therapeutic approaches to many of the world's debilitating or fatal diseases.

The research explains how one form of oxidative stress called tyrosine nitration can lead to cell death. Through the common link of inflammation, this may relate to health problems ranging from heart disease to chronic pain, spinal injury, cancer, aging, and amyotrophic lateral sclerosis, or Lou Gehrig's disease.

As part of the work, the scientists also identified a specific "chaperone" protein damaged by oxidants, which is getting activated in this spiral of cellular decline and death. This insight will provide a new approach to design therapeutic drugs.

The findings were published by scientists from the Linus Pauling Institute at Oregon State University; Maria Clara Franco and Alvaro Estevez, now at the University of Central Florida; and researchers from several other institutions. They culminate a decade of work.

"These are very exciting results and could begin a major shift in medicine," said Joseph Beckman.

Beckman is an LPI principal investigator, distinguished professor of biochemistry, and director of the OSU Environmental Health Sciences Center. He also last year received the Discovery Award from the Medical Research Foundation of Oregon, given to the leading medical scientist in the state.

"Preventing this process of tyrosine nitration may protect against a wide range of degenerative diseases," Beckman said. "The study shows that drugs could effectively target oxidatively-damaged proteins."

Scientists have known for decades about the general concept of oxidative damage to cells, resulting in neurodegeneration, inflammation and aging. But the latest findings prove that some molecules in a cell are thousands of times more sensitive to attack.

In this case, heat shock protein 90, or HSP90, helps monitor and chaperone as many as 200 necessary cell functions. But it can acquire a toxic function after nitration of a single tyrosine residue.

"It was difficult to believe that adding one nitro group to one protein will make it toxic enough to kill a motor neuron," Beckman said. "But nitration of HSP90 was shown to activate a pro-inflammatory receptor called P2X7. This begins a dangerous spiral that eventually leads to the death of motor neurons."

The very specificity of this attack, however, is part of what makes the new findings important. Drugs that could prevent or reduce oxidative attack on these most vulnerable sites in a cell might have value against a wide range of diseases.

"Most people think of things like heart disease, cancer, aging, liver disease, even the damage from spinal injury as completely different medical issues," Beckman said. "To the extent they can often be traced back to inflammatory processes that are caused by oxidative attack and cellular damage, they can be more similar than different. It could be possible to develop therapies with value against many seemingly different health problems."

Beckman has spent much of his career studying the causes of amyotrophic lateral sclerosis, and this study suggested the processes outlined in this study might be relevant both to that disease and spinal cord injury.

Key to this research were new methods that allowed researchers to genetically engineer nitrotyrosine into HSP90. This allowed scientists to pin down the exact areas of damage, which may be important in the identification of drugs that could affect this process, the researchers said.

This work was supported by the National Institutes of Health, Burke Medical Research Institute, Weill Cornell Medical College, the ALS Association and other agencies.

Most Popular Now

Top 20 World Pharma News of 2016

Look back at the most prominent moments from the year 2016. We are proud to announce the 20 most popular World Pharma News from 2016, the most commonly viewed news accord...

Read more

Sanofi and Boehringer Ingelheim confirm Closing of…

Sanofi and Boehringer Ingelheim confirmed that the strategic transaction signed in June 2016, which consists of an exchange of Sanofi's animal health business (Merial) an...

Read more

Diabetes, heart disease, and back pain dominate US…

Just 20 conditions make up more than half of all spending on health care in the United States, according to a new comprehensive financial analysis that examines spending ...

Read more

FDA approves first drug for spinal muscular atroph…

The U.S. Food and Drug Administration has approved Spinraza (nusinersen), the first drug approved to treat children and adults with spinal muscular atrophy (SMA), a rare ...

Read more

Novartis invests in next generation therapies to r…

Novartis announced today a collaboration and option agreement with Ionis Pharmaceuticals, Inc. and its affiliate Akcea Therapeutics, Inc., to license two novel treatments...

Read more

Topical treatment activates immune system to clear…

A combination of two FDA-approved drugs - a topical chemotherapy and an immune-system-activating compound - was able to rapidly clear actinic keratosis lesions from patie...

Read more

Vaccine shows promising results for early-stage br…

Deregulation and inhibition of the immune system contributes to cancer development. Many therapeutic strategies aim to re-stimulate the immune system to recognize cancer ...

Read more

Bristol-Myers Squibb announces immunotherapy clini…

Bristol-Myers Squibb Company (NYSE:BMY) today announced a new clinical research collaboration with Janssen Biotech, Inc. to evaluate the combination of Bristol-Myers Squi...

Read more

Anti-aging therapies targeting senescent cells: Fa…

It's an exciting time to be an elderly mouse. Researchers believe that by removing senescent cells (cells with a persistent damage response), which naturally accumulate w...

Read more

Novo Nordisk and Glooko partner to develop digital…

Novo Nordisk and Glooko today announced that the two companies will work together to deliver jointly-developed and branded digital health solutions for people with diabet...

Read more

FDA grants Roche's cancer immunotherapy TECENTRIQ …

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced that the U.S. Food and Drug Administration (FDA) has accepted the company's supplemental Biologics License Application (sBLA)...

Read more

AstraZeneca and Lilly to develop second potentiall…

AstraZeneca and Eli Lilly and Company have announced a worldwide agreement to co-develop MEDI1814, an antibody selective for amyloid-beta 42 (Aβ42), which is currently in...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]