Vitamin K2: New hope for Parkinson's patients?

Neuroscientist Patrik Verstreken, associated with VIB and KU Leuven, succeeded in undoing the effect of one of the genetic defects that leads to Parkinson's using vitamin K2. His discovery gives hope to Parkinson's patients. This research was done in collaboration with colleagues from Northern Illinois University (US) published on the website of the authorative journal Science.

"It appears from our research that administering vitamin K2 could possibly help patients with Parkinson's. However, more work needs to be done to understand this better," says Patrik Verstreken.

If we looked at cells as small factories, then mitochondria would be the power plants responsible for supplying the energy for their operation. They generate this energy by transporting electrons. In Parkinson's patients, the activity of mitochondria and the transport of electrons have been disrupted, resulting in the mitochondria no longer producing sufficient energy for the cell. This has major consequences as the cells in certain parts of the brain will start dying off, disrupting communication between neurons. The results are the typical symptoms of Parkinson's: lack of movement (akinesia), tremors and muscle stiffness.

The exact cause of this neurodegenerative disease is not known. In recent years, however, scientists have been able to describe several genetic defects (mutations) found in Parkinson's patients, including the so-called PINK1 and Parkin mutations, which both lead to reduced mitochondrial activity. By studying these mutations, scientists hope to unravel the mechanisms underlying the disease process.

Fruit flies (Drosophila) are frequently used in lab experiments because of their short life spans and breeding cycles, among other things. Within two weeks of her emergence, every female is able to produce hundreds of offspring. By genetically modifying fruitflies, scientists can study the function of certain genes and proteins. Patrik Verstreken and his team used fruitflies with a genetic defect in PINK1 or Parkin that is similar to the one associated with Parkinson's. They found that the flies with a PINK1 or Parkin mutation lost their ability to fly.

Upon closer examination, they discovered that the mitochondria in these flies were defective, just as in Parkinson's patients. Because of this they generated less intracellular energy – energy the insects needed to fly. When the flies were given vitamin K2, the energy production in their mitochondria was restored and the insects' ability to fly improved. The researchers were also able to determine that the energy production was restored because the vitamin K2 had improved electron transport in the mitochondria. This in turn led to improved energy production.

Vitamin K2 plays a role in the energy production of defective mitochondria. Because defective mitochondria are also found in Parkinson's patients with a PINK1 or Parkin mutation, vitamin K2 potentially offers hope for a new treatment for Parkinson's.

Most Popular Now

FDA approves Roche's OCREVUS™ (ocrelizumab) for re…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced today that the US Food and Drug Administration (FDA) approved OCREVUS™ (ocrelizumab) as the first and only medicine for both ...

Read more

First collaborative definition of patient centrici…

AstraZeneca announced that BMJ Innovations has published the first collaborative definition of patient centricity for the pharmaceutical industry. The definition was co-d...

Read more

High doses of vitamin C to improve cancer treatmen…

Clinical trials found that it is safe to regularly infuse brain and lung cancer patients with 800 - 1000 times the daily recommended amount of vitamin C as a potential st...

Read more

Deep learning algorithm could boost drug developme…

Artificially intelligent algorithms can learn to identify amazingly subtle information, enabling them to distinguish between people in photos or to screen medical images ...

Read more

Bristol-Myers Squibb enters into separate agreemen…

Bristol-Myers Squibb Company (NYSE:BMY) today announced that it has entered into two separate agreements to license BMS-986168, an anti-eTau compound in development for ...

Read more

Tagrisso (osimertinib) receives US FDA full approv…

AstraZeneca today announced that the US Food and Drug Administration (FDA) has granted full approval for Tagrisso (osimertinib) 80mg once-daily tablets, for the treatment...

Read more

A one-two punch hits pancreatic cancer where it hu…

Australian scientists have uncovered a promising new approach to treating pancreatic cancer, by targeting the tissue around the tumour to make it 'softer' and more respon...

Read more

FDA allows marketing of first direct-to-consumer t…

The U.S. Food and Drug Administration today allowed marketing of 23andMe Personal Genome Service Genetic Health Risk (GHR) tests for 10 diseases or conditions. These are ...

Read more

Novartis to strengthen R&D pipeline by in-lice…

Novartis has exercised an option to in-license ECF843 for ophthalmic indications worldwide (outside Europe). The closing of the deal is subject to customary closing condi...

Read more

New drug delivery system shows promise for fightin…

A new cancer-drug delivery system shows the ability to exploit the oxygen-poor areas of solid tumors that make the growths resistant to standard chemotherapy and radiatio...

Read more

Towards a safe and scalable cell therapy for type …

More than 36 million people globally are affected by type 1 diabetes (T1D), a lifelong disorder where insulin producing cells are attacked and destroyed by the immune sys...

Read more

XELJANZ® (tofacitinib citrate) receives marketing …

Pfizer Inc. (NYSE:PFE) announced today that the European Commission (EC) has approved XELJANZ® (tofacitinib citrate) 5 mg twice daily (BID) oral tablets in combination wi...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]