Vitamin K2: New hope for Parkinson's patients?

Neuroscientist Patrik Verstreken, associated with VIB and KU Leuven, succeeded in undoing the effect of one of the genetic defects that leads to Parkinson's using vitamin K2. His discovery gives hope to Parkinson's patients. This research was done in collaboration with colleagues from Northern Illinois University (US) published on the website of the authorative journal Science.

"It appears from our research that administering vitamin K2 could possibly help patients with Parkinson's. However, more work needs to be done to understand this better," says Patrik Verstreken.

If we looked at cells as small factories, then mitochondria would be the power plants responsible for supplying the energy for their operation. They generate this energy by transporting electrons. In Parkinson's patients, the activity of mitochondria and the transport of electrons have been disrupted, resulting in the mitochondria no longer producing sufficient energy for the cell. This has major consequences as the cells in certain parts of the brain will start dying off, disrupting communication between neurons. The results are the typical symptoms of Parkinson's: lack of movement (akinesia), tremors and muscle stiffness.

The exact cause of this neurodegenerative disease is not known. In recent years, however, scientists have been able to describe several genetic defects (mutations) found in Parkinson's patients, including the so-called PINK1 and Parkin mutations, which both lead to reduced mitochondrial activity. By studying these mutations, scientists hope to unravel the mechanisms underlying the disease process.

Fruit flies (Drosophila) are frequently used in lab experiments because of their short life spans and breeding cycles, among other things. Within two weeks of her emergence, every female is able to produce hundreds of offspring. By genetically modifying fruitflies, scientists can study the function of certain genes and proteins. Patrik Verstreken and his team used fruitflies with a genetic defect in PINK1 or Parkin that is similar to the one associated with Parkinson's. They found that the flies with a PINK1 or Parkin mutation lost their ability to fly.

Upon closer examination, they discovered that the mitochondria in these flies were defective, just as in Parkinson's patients. Because of this they generated less intracellular energy – energy the insects needed to fly. When the flies were given vitamin K2, the energy production in their mitochondria was restored and the insects' ability to fly improved. The researchers were also able to determine that the energy production was restored because the vitamin K2 had improved electron transport in the mitochondria. This in turn led to improved energy production.

Vitamin K2 plays a role in the energy production of defective mitochondria. Because defective mitochondria are also found in Parkinson's patients with a PINK1 or Parkin mutation, vitamin K2 potentially offers hope for a new treatment for Parkinson's.

Most Popular Now

Fasenra (benralizumab) receives US FDA approval fo…

AstraZeneca and its global biologics research and development arm, MedImmune, announced that the US Food and Drug Administration (FDA) has approved Fasenra (benralizumab)...

Alzheimer's disease might be a 'whole body' proble…

Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scie...

Cancer cells destroyed with dinosaur extinction me…

Cancer cells can be targeted and destroyed with the metal from the asteroid that caused the extinction of the dinosaurs, according to new research by an international col...

Novartis confirms leadership in multiple sclerosis…

Novartis today announced it will present 54 scientific abstracts from across its multiple sclerosis (MS) research portfolio at the 7th Joint European and Americas Committ...

Amgen and Novartis announce expanded collaboration…

Amgen (NASDAQ:AMGN) and Novartis announced an expanded collaboration with the Banner Alzheimer's Institute (BAI) to initiate a new trial - the Alzheimer's Prevention Init...

Transplanted hematopoietic stem cells reverse dama…

Researchers at University of California San Diego School of Medicine report that a single infusion of wildtype hematopoietic stem and progenitor cells (HSPCs) into a mous...

Novartis announces the planned acquisition of Adva…

Novartis announced today, that it has entered a memorandum of understanding with Advanced Accelerator Applications (AAA) under which Novartis intends to commence a tender...

'Precision Medicine' may not always be so precise

Precision Medicine in oncology, where genetic testing is used to determine the best drugs to treat cancer patients, is not always so precise when applied to some of the w...

China's out of control 'silent killer' affects one…

More than one-third of adults in China have high blood pressure - often dubbed the "silent killer" for its lack of symptoms - but only about one in 20 have the condition ...

New tissue-engineered blood vessel replacements on…

Researchers at the University of Minnesota have created a new lab-grown blood vessel replacement that is composed completely of biological materials, but surprisingly doe...

New US study reveals key reasons why millions of p…

Few of the more than 90 million Americans(1) with obesity are seeking and receiving long-term obesity care, according to new data from the Awareness, Care and Treatment I...

Efficacy and safety maintained in patients who swi…

Boehringer Ingelheim today announced one-year data from VOLTAIRE®-RA, a pivotal Phase III clinical trial comparing Cyltezo® (adalimumab-adbm) and reference product Humira...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]