Stem cell researchers map new knowledge about insulin production

Scientists from The Danish Stem Cell Center (DanStem) at the University of Copenhagen and Hagedorn Research Institute have gained new insight into the signaling paths that control the body's insulin production. This is important knowledge with respect to their final goal: the conversion of stem cells into insulin-producing beta cells that can be implanted into patients who need them. The research results have just been published in the journal PNAS.

Insulin is a hormone produced by beta cells in the pancreas. If these beta cells are defective, the body develops diabetes. Insulin is vital to life and therefore today the people who cannot produce their own in sufficient quantities, or at all, receive carefully measured doses – often via several daily injections. Scientists hope that in the not-so-distant future it will be possible to treat diabetes more effectively and prevent secondary diseases such as cardiac disease, blindness and nerve and kidney complications by offering diabetes patients implants of new, well-functioning, stem-cell-based beta cells.

"In order to get stem cells to develop into insulin-producing beta cells, it is necessary to know what signaling mechanisms normally control the creation of beta cells during fetal development. This is what our new research results can contribute," explains Professor Palle Serup from DanStem.

"When we know the signaling paths, we can copy them in test tubes and thus in time convert stem cells to beta cells," says Professor Serup.

The new research results were obtained in a cooperative effort between DanStem, the Danish Hagedorn Research Institute and international partners in Japan, Germany, Korea and the USA. The scientific paper has just been published in the well-respected international journal PNAS (Proceedings of the National Academy of Sciences of the United States of America) entitled Mind bomb 1 is required for pancreatic β-cell formation.

Better control of stem cells
The signaling mechanism that controls the first steps of the development from stem cells to beta cells has long been known.

"Our research contributes knowledge about the next step in development and the signaling involved in the communication between cells - an area that has not been extensively described. This new knowledge about the ability of the so-called Notch signaling first to inhibit and then to stimulate the creation of hormone-producing cells is crucially important to being able to control stem cells better when working with them in test tubes," explains Professor Palle Serup.

This new knowledge about the characteristics of the Notch signaling mechanism will enable scientists to design new experimental ways to cultivate stem cells so that they can be more effectively converted into insulin-producing beta cells.

Most Popular Now

New strategy to treat Parkinson's disease

Northwestern Medicine scientists have used patient-derived neurons to develop and test a new strategy to treat Parkinson's disease by mitigating the effects of harmful ge...

AI could offer warnings about serious side effects…

The more medications a patient takes, the greater the likelihood that interactions between those drugs could trigger negative side effects, including long-term organ dama...

OPKO and Pfizer announce positive Phase 3 top-line…

OPKO Health Inc. (NASDAQ: OPK) and Pfizer Inc. (NYSE: PFE) announced that the global Phase 3 trial evaluating somatrogon dosed once-weekly in pre-pubertal children with g...

Trastuzumab deruxtecan granted FDA Priority Review…

AstraZeneca and Daiichi Sankyo Company, Limited (Daiichi Sankyo) today announced that the US Food and Drug Administration (FDA) has accepted for review the Biologics Lice...

The Bristol-Myers Squibb-Pfizer Alliance and Fitbi…

The Bristol-Myers Squibb-Pfizer Alliance and Fitbit announced at the TIME 100 Health Summit in New York that they are working together to help drive timely diagnosis of a...

Nplate® (romiplostim) now approved for earlier use…

Amgen (NASDAQ:AMGN) announced that the U.S. Food and Drug Administration (FDA) approved Amgen's Supplemental Biologics License Application (sBLA) for Nplate® (romiplostim...

Novartis announces that Jakavi® (ruxolitinib) meet…

Novartis today announced positive topline results from the Phase III REACH2 study evaluating Jakavi® (ruxolitinib) in patients with steroid-refractory acute graft-versus-...

Bayer launches LifeHub UK focused on artificial in…

Bayer launched LifeHub UK to accelerate and optimize disease detection and data-driven drug discovery by developing artificial-intelligence-enabled imaging solutions. The...

Amgen recommends rejection of 'mini-tender' offer …

Amgen (NASDAQ:AMGN) today announced that it has been notified of an unsolicited "mini-tender" offer dated Oct. 11, 2019, made by TRC Capital Corporation, a private Canadi...

Antibody-based eye drops show promise for treating…

Researchers at the University of Illinois at Chicago are the first to identify the presence of a specific type of antibody, called anti-citrullinated protein autoantibodi...

First entirely digital clinical trial encourages p…

As little as a daily ping on your phone can boost physical activity, researchers from the Stanford University School of Medicine and their collaborators report in a new s...

Abbott and Omada Health partner to offer integrate…

Abbott (NYSE: ABT) and Omada Health announced today they are partnering to integrate Abbott's revolutionary FreeStyle Libre system, a continuous glucose monitoring (CGM) ...