UCLA-engineered stem cells seek out and kill HIV in living organisms

Expanding on previous research providing proof-of-principal that human stem cells can be genetically engineered into HIV-fighting cells, a team of UCLA researchers have now demonstrated that these cells can actually attack HIV-infected cells in a living organism.

The study, published April 12 in the journal PLoS Pathogens, demonstrates for the first time that engineering stem cells to form immune cells that target HIV is effective in suppressing the virus in living tissues in an animal model, said lead investigator Scott G. Kitchen, an assistant professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute.

"We believe that this study lays the groundwork for the potential use of this type of an approach in combating HIV infection in infected individuals, in hopes of eradicating the virus from the body," he said.

In the previous research, the scientists took CD8 cytotoxic T lymphocytes - the "killer" T cells that help fight infection - from an HIV-infected individual and identified the molecule known as the T cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. However, these T cells, while able to destroy HIV-infected cells, do not exist in great enough quantities to clear the virus from the body. So the researchers cloned the receptor and used this to genetically engineer human blood stem cells. They then placed the engineered stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a living organism.

The engineered stem cells developed into a large population of mature, multi-functional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also discovered that HIV-specific T cell receptors have to be matched to an individual in much the same way an organ is matched to a transplant patient.

In this current study, the researchers similarly engineered human blood stem cells and found that they can form mature T cells that can attack HIV in tissues where the virus resides and replicates. They did so by using a surrogate model, the humanized mouse, in which HIV infection closely resembles the disease and its progression in humans.

In a series of tests on the mice's peripheral blood, plasma and organs conducted two weeks and six weeks after introducing the engineered cells, the researchers found that the number of CD4 "helper" T cells - which become depleted as a result of HIV infection - increased, while levels of HIV in the blood decreased. CD4 cells are white blood cells that are an important component of the immune system, helping to fight off infections. These results indicated that the engineered cells were capable of developing and migrating to the organs to fight infection there.

The researchers did note a potential weakness with the study: Human immune cells reconstituted at a lower level in the humanized mice than they would in humans, and as a result, the mice's immune systems were mostly, though not completely, reconstructed. Because of this, HIV may be slower to mutate in the mice than in human hosts. So the use of multiple, engineered T cell receptors may be one way to adjust for the higher potential for HIV mutation in humans.

"We believe that this is the first step in developing a more aggressive approach in correcting the defects in the human T cell responses that allow HIV to persist in infected people," Kitchen said.

The researchers will now begin making T cell receptors that target different parts of HIV and that could be used in more genetically matched individuals, he said.

Other study authors are Bernard R. Levin, Gregory Bristol, Valerie Rezek, Sohn Kim, Christian Aguilera-Sandoval, Arumugam Balamurugan, Otto O. Yang and Jerome A. Zack, all of UCLA.

The National Institutes of Health, the California HIV/AIDS Research Program, the California Institute for Regenerative Medicine, the UC Multicampus Research Program and Initiatives from the California Center for Antiviral Drug Discovery, and the UCLA Center for AIDS Research (CFAR) funded this study.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social sciences, public health, nursing and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

Most Popular Now

Roche launches imCORE, a global network of cancer …

Roche (SIX: RO, ROG; OTCQX: RHHBY) has launched the global cancer immunotherapy Centers of Research Excellence (imCORE™) Network. This network brings together many of the...

Read more

15th Annual eyeforpharma Philadelphia 2017

20 - 21 April 2017, Philadelphia, USA. It's eyeforpharma Philadelphia's 15th year; already the largest, most senior and most influential forum for commercial pharma exec...

Read more

Merck wins R&D 100 Award for top invention

Merck, a leading science and technology company, received a prestigious R&D 100 Award for its Sanger Arrayed Lentiviral CRISPR Libraries - the first of its kind CRISPR li...

Read more

Benzodiazepine and related drug use increases hip …

The use of benzodiazepines and related drugs increases the risk of hip fracture by 43% in persons with Alzheimer's disease, according to a new study from the University o...

Read more

Among antidementia drugs, memantine is associated …

A recent study from the University of Eastern Finland shows that among users of antidementia drugs, persons using memantine have the highest risk of pneumonia. The use of...

Read more

World of viruses uncovered

A groundbreaking study of the virosphere of the most populous animals - those without backbones such as insects, spiders and worms and that live around our houses - has u...

Read more

Boehringer Ingelheim and China Southeast Universit…

Boehringer Ingelheim and China Southeast University Institute of Life Sciences have announced the start of a joint research project to develop new treatment approaches fo...

Read more

Smart patch releases blood thinners as needed

An interdisciplinary team of researchers has developed a smart patch designed to monitor a patient's blood and release blood-thinning drugs as needed to prevent the occur...

Read more

Novartis acquires Selexys Pharmaceuticals Corporat…

Novartis today announced it has acquired Selexys Pharmaceuticals Corporation, a company specializing in development of therapeutics in certain hematologic and inflammator...

Read more

Novo Nordisk expands programme to reach 20,000 chi…

Today, Novo Nordisk announced a four-year extension of its Changing Diabetes® in Children programme which provides access to diabetes care and free insulin to children wi...

Read more

IBM and Pfizer to accelerate immuno-oncology resea…

IBM (NYSE: IBM) Watson Health and Pfizer Inc. (NYSE: PFE) have announced a collaboration that will utilize IBM Watson for Drug Discovery to help accelerate Pfizer's resea...

Read more

Greater efforts are needed to encourage patients t…

In a review of published studies addressing patients' perceptions and factors influencing their reporting of adverse drug reactions, most patients were not aware of repor...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]