UCLA-engineered stem cells seek out and kill HIV in living organisms

Expanding on previous research providing proof-of-principal that human stem cells can be genetically engineered into HIV-fighting cells, a team of UCLA researchers have now demonstrated that these cells can actually attack HIV-infected cells in a living organism.

The study, published April 12 in the journal PLoS Pathogens, demonstrates for the first time that engineering stem cells to form immune cells that target HIV is effective in suppressing the virus in living tissues in an animal model, said lead investigator Scott G. Kitchen, an assistant professor of medicine in the division of hematology and oncology at the David Geffen School of Medicine at UCLA and a member of the UCLA AIDS Institute.

"We believe that this study lays the groundwork for the potential use of this type of an approach in combating HIV infection in infected individuals, in hopes of eradicating the virus from the body," he said.

In the previous research, the scientists took CD8 cytotoxic T lymphocytes - the "killer" T cells that help fight infection - from an HIV-infected individual and identified the molecule known as the T cell receptor, which guides the T cell in recognizing and killing HIV-infected cells. However, these T cells, while able to destroy HIV-infected cells, do not exist in great enough quantities to clear the virus from the body. So the researchers cloned the receptor and used this to genetically engineer human blood stem cells. They then placed the engineered stem cells into human thymus tissue that had been implanted in mice, allowing them to study the reaction in a living organism.

The engineered stem cells developed into a large population of mature, multi-functional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also discovered that HIV-specific T cell receptors have to be matched to an individual in much the same way an organ is matched to a transplant patient.

In this current study, the researchers similarly engineered human blood stem cells and found that they can form mature T cells that can attack HIV in tissues where the virus resides and replicates. They did so by using a surrogate model, the humanized mouse, in which HIV infection closely resembles the disease and its progression in humans.

In a series of tests on the mice's peripheral blood, plasma and organs conducted two weeks and six weeks after introducing the engineered cells, the researchers found that the number of CD4 "helper" T cells - which become depleted as a result of HIV infection - increased, while levels of HIV in the blood decreased. CD4 cells are white blood cells that are an important component of the immune system, helping to fight off infections. These results indicated that the engineered cells were capable of developing and migrating to the organs to fight infection there.

The researchers did note a potential weakness with the study: Human immune cells reconstituted at a lower level in the humanized mice than they would in humans, and as a result, the mice's immune systems were mostly, though not completely, reconstructed. Because of this, HIV may be slower to mutate in the mice than in human hosts. So the use of multiple, engineered T cell receptors may be one way to adjust for the higher potential for HIV mutation in humans.

"We believe that this is the first step in developing a more aggressive approach in correcting the defects in the human T cell responses that allow HIV to persist in infected people," Kitchen said.

The researchers will now begin making T cell receptors that target different parts of HIV and that could be used in more genetically matched individuals, he said.

Other study authors are Bernard R. Levin, Gregory Bristol, Valerie Rezek, Sohn Kim, Christian Aguilera-Sandoval, Arumugam Balamurugan, Otto O. Yang and Jerome A. Zack, all of UCLA.

The National Institutes of Health, the California HIV/AIDS Research Program, the California Institute for Regenerative Medicine, the UC Multicampus Research Program and Initiatives from the California Center for Antiviral Drug Discovery, and the UCLA Center for AIDS Research (CFAR) funded this study.

The UCLA AIDS Institute, established in 1992, is a multidisciplinary think tank drawing on the skills of top-flight researchers in the worldwide fight against HIV and AIDS, the first cases of which were reported in 1981 by UCLA physicians. Institute members include researchers in virology and immunology, genetics, cancer, neurology, ophthalmology, epidemiology, social sciences, public health, nursing and disease prevention. Their findings have led to advances in treating HIV, as well as other diseases, such as hepatitis B and C, influenza and cancer.

Most Popular Now

FDA takes action against 14 companies for selling …

The U.S. Food and Drug Administration today posted warning letters addressed to 14 U.S.-based companies illegally selling more than 65 products that fraudulently claim to...

Read more

Merck divests Biosimilars business to Fresenius

Merck, a leading science and technology company, has announced the divestment of its Biosimilars business to Fresenius. The decision to divest Biosimilars is aligned with...

Read more

FDA approves drug to treat ALS

The U.S. Food and Drug Administration today approved Radicava (edaravone) to treat patients with amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig's...

Read more

AstraZeneca marks a key milestone with the ‘toppin…

AstraZeneca marks a key milestone in its successful move to Cambridge, UK, with the 'topping out' of its new, state-of-the-art, strategic R&D centre and global corporate ...

Read more

FDA approves first treatment for a form of Batten …

The U.S. Food and Drug Administration today approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved ...

Read more

Abbott announces CE Mark and first use of the worl…

Abbott (NYSE: ABT) today announced CE Mark and first use of the new Confirm RxTM Insertable Cardiac Monitor (ICM), the world's first smartphone compatible ICM that will h...

Read more

Italian-style coffee reduces the risk of prostate …

Add another typical component of the Italian way of life to the long list of foods characterizing one of the most healthy populations in the world. This time it's coffee...

Read more

Antibiotic doxycycline may offer hope for treatmen…

A study published in the journal Scientific Reports suggests that doxycycline, an antibiotic used for over half a century against bacterial infections, can be prescribed ...

Read more

Novartis exercises exclusive option agreement with…

Novartis announced today that it has notified Conatus Pharmaceuticals Inc., of its exercise of the option to an exclusive license for the global development and commercia...

Read more

England's Cancer Drugs Fund 'failed to deliver mea…

Analysis of the drugs that were approved for use by the NHS Cancer Drugs Fund (CDF) in England has shown that the fund was not good value for patients and society and may...

Read more

Imfinzi significantly reduces the risk of disease …

AstraZeneca and MedImmune, its global biologics research and development arm, today announced positive results for the Phase III PACIFIC trial, a randomised, double-blind...

Read more

Vitamin A deficiency is detrimental to blood stem …

Many specialized cells, such as in the skin, gut or blood, have a lifespan of only a few days. Therefore, steady replenishment of these cells is indispensable. They arise...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]