Scientists launch new attack against AIDS

EU-funded researchers have developed a new defence against infection from the AIDS (acquired immune deficiency syndrome) virus. The pioneering method involves creating a protective shield that restricts the virus from making contact with a susceptible host cell and penetrating the immune system. Published in the journal Chemistry & Biology, the results pave the way for future pharmaceutical drugs that could combat the disease in its early stages.

The three-year breakthrough study was led by Dr Félix Goñi of the Consejo Superior de Investigaciones Científicas (CSIC) in Spain, together with several CSIC departments and Spanish institutes specialising in chemistry and molecular biology.

Their novel approach is based on the regulation of cell membrane fluidity in order to prevent the occurrence of 'membrane fusion', where contact is established between the cell membranes and the membrane of the AIDS virus.

As the protective, fragile layer of the cytoplasm, the membrane of a cell has a similar structure to that of the AIDS virus membrane. Fusion occurs when both membranes make contact, thus producing an orifice that acts as an entry point for the virus. At this stage, the virus attaches to a cell receptor and begins to spread.

The objective for Dr Goñi and his team was to make the membrane structure stronger and more rigid so as to prevent fusion from taking place altogether, and to avoid the subsequent viral escalation.

Dr Goñi explained that in order for the orifice to be created, the membranes must be fluid and mobile. To counter this, the team discovered a procedure that makes the cell membranes tougher and less yielding.

"This [method] could well give rise to a new pharmaceutical drug, which makes the membranes more rigid and impede the entrance of the AIDS virus. Instead of the membrane being flexible, a kind of armour is established which makes the cell impenetrable," Dr Goñi pointed out.

Almost all existing methods to treat the AIDS virus focus on the need to stop the spread of the virus when it is already inside the first cell. An exception is Enfurvitide, a treatment that aims to stop the virus from entering the host cell but is based on a completely different principle to the one developed by Dr Goñi and his team.

Beyond the AIDS virus, the strategy also has the potential to be applied to the flu virus and other viruses with membrane.

The research was supported by two EU projects totalling EUR 21.89 million: CHAIN (Collaborative HIV and anti-HIV drug resistance network), and INNOCHEM (Innovative chemokine-based therapeutic strategies for autoimmunity and chronic inflammation). These projects were funded under the Health Theme of the Seventh Framework Programme (FP7) and the 'Life sciences, genomics and biotechnology for health' Thematic Area of the Sixth Framework Programme (FP6) respectively.

For more information, please visit:

Copyright ©European Communities, 2010
Neither the Office for Official Publications of the European Communities, nor any person acting on its behalf, is responsible for the use, which might be made of the attached information. The attached information is drawn from the Community R&D Information Service (CORDIS). The CORDIS services are carried on the CORDIS Host in Luxembourg - http://cordis.europa.eu. Access to CORDIS is currently available free-of-charge.

Most Popular Now

BioMotiv and Bristol-Myers Squibb announce the lau…

BioMotiv, a mission-driven drug development accelerator associated with The Harrington Project for discovery and development, that advances breakthrough discoveries from ...

CEPI and GSK announce collaboration to strengthen …

CEPI, the Coalition for Epidemic Preparedness Innovations, and GSK announced a new collaboration aimed at helping the global effort to develop a vaccine for the 2019-nCoV...

Sandoz completes acquisition of Aspen's Japanese o…

Sandoz today announced that it has successfully completed the acquisition of the Japanese business of Aspen Global Incorporated (AGI), a wholly owned subsidiary of Aspen ...

Sanofi brain-penetrant BTK inhibitor meets primary…

The Sanofi Phase 2b study evaluating its investigational BTK (Bruton's tyrosine kinase) inhibitor (SAR442168), an oral, brain-penetrant, selective small molecule, achieve...

Roche reports very strong results in 2019

In 2019, Group sales rose 9% to CHF 61.5 billion and core EPS grew 13%, ahead of sales. The core operating profit increased 11%, reflecting the strong underlying business...

Sanofi completes acquisition of Synthorx, Inc.

Sanofi announced the successful completion of its acquisition of Synthorx, Inc. ("Synthorx") for $68 per share in cash. "The acquisition of Synthorx perfectly aligns w...

Merck donates one billionth praziquantel tablet

Merck, a leading science and technology company, today announced that it has already donated 1 billion tablets of praziquantel, the standard medication for the treatment ...

WHO, China leaders discuss next steps in battle ag…

The Director-General of the World Health Organization (WHO), Dr Tedros Adhanom Ghebreyesus, met President Xi Jinping of the People's Republic of China in Beijing. They sh...

Bayer and Nuvisan create new research unit in Berl…

Bayer AG today announced that it entered into a definitive agreement to transfer a large part of its Berlin-based small molecule research unit to Nuvisan, an internationa...

FDA approves first drug for treatment of peanut al…

Today the U.S. Food and Drug Administration approved Palforzia [Peanut (Arachis hypogaea) Allergen Powder-dnfp] to mitigate allergic reactions, including anaphylaxis, tha...

Can bilingualism protect the brain even with early…

A study by York University psychology researchers provides new evidence that bilingualism can delay symptoms of dementia. Alzheimer's disease is the most common form of d...

Poliovirus therapy shows potential as cancer vacci…

A modified form of poliovirus, pioneered at Duke Cancer Institute as a therapy for glioblastoma brain tumors, appears in laboratory studies to also have applicability for...