University of Tokyo's RCAST, Fujitsu, and Kowa successfully create promising new compounds to fight drug-resistant cancer

FujitsuThe University of Tokyo's Research Center for Advanced Science and Technology (RCAST), Fujitsu Limited, and Kowa Company Ltd. today announced that using IT-based drug discovery technologies, which entails computer-based virtual design and evaluation, they have successfully created new small molecule compounds that can inhibit cancer-causing "target proteins," and that demonstrate promise against cancers that have shown resistance to existing drugs. In order to link the results of this research to the creation of new drugs, Kowa intends to improve upon the small molecule compounds discovered through this research.

Details of the Research and the Division of Responsibilities

Fujitsu and RCAST began joint research on IT-based drug discovery in June 2011, with Kowa joining in July, conducting research projects around multiple drug discovery targets. This particular joint research project began in December 2015, selecting a drug-resistant oncogenic protein as a drug discovery target. Fujitsu used IT-based drug discovery to design a small molecule compound that featured inhibitory activity(1), and then Kowa synthesized the compound and assessed its inhibitory activity in experiments. RCAST took on the role of providing information on drug discovery targets based from a medical perspective. Fujitsu and Fujitsu Laboratories Ltd. additionally made repeated improvements to the IT-based drug discovery technologies during the course of the joint research project, increasing both accuracy and performance.

Results of the Joint Research

In this joint research, Fujitsu leveraged its proprietary technologies to provide Kowa with chemical structures with the anticipated effect of decreasing the activities of the target protein. Specifically, Fujitsu incorporated drug candidate compound design technology(2) and the drug discovery insights it has previously accumulated, and designed synthetic accessible small molecule compounds using computers. Next, the binding affinity of each compound with the target protein is calculated to narrow down the selection using the M2BAR method(3), which is an improvement on high precision activity prediction technology(4). Fujitsu also took into consideration the results of high precision conformational analysis(5) based on quantum mechanics. Kowa synthesized the small molecule compounds designed by Fujitsu, and confirmed that some of the compounds demonstrated the inhibitory activity desired for drug candidates. Kowa subsequently synthesized multiple small molecule compounds sharing similar chemical structures, and confirmed that a series of the synthesized compounds also showed inhibitory activity. Kowa is currently evaluating the complex structure of these compounds using X-ray crystallography, and plans to optimize the small molecule compounds obtained from this research to reflect the results to the discovery of new drugs. Through this joint research project, RCAST, Fujitsu, and Kowa have succeeded in using IT-based drug discovery to create new small molecule compounds with inhibitory activity against cancer-causing target proteins, and may one day prove effective even against cancers that show resistance to existing drugs.

About Research Center for Advanced Science and Technology

Research Center for Advanced Science and Technology (RCAST) aims to contribute to the development of science and technology by expeditiously taking on new challenges arising from the advancement of science and coincident changes in society, and by exploring new areas of advanced science and technology for the benefit of humankind and society.

About Kowa

Kowa Company, Ltd. is a private multinational company headquartered in Nagoya, Japan. Established in 1894, Kowa has been actively engaging in multidiscipline business including pharmaceuticals, textiles, machinery, and construction material fields. Its pharmaceutical division is focused on research and development for cardiovascular therapeutics, ophthalmology and anti-inflammatory agents.

About Fujitsu Ltd

Fujitsu is the leading Japanese information and communication technology (ICT) company, offering a full range of technology products, solutions, and services. Approximately 155,000 Fujitsu people support customers in more than 100 countries. We use our experience and the power of ICT to shape the future of society with our customers. Fujitsu Limited (TSE: 6702) reported consolidated revenues of 4.5 trillion yen (US$40 billion) for the fiscal year ended March 31, 2017.

1. Inhibitory activity The degree to which a compound binds to a protein thought to cause a specific disease indication and inhibits the function of the protein. Usually expressed in terms of the concentration of the compound.
2. Drug candidate compound design technology Optimum Packing of Molecular Fragments (OPMF), a software module developed by Fujitsu that designs small molecule compounds that bind to the functional site of proteins that are believed to cause specific disease indications and inhibit the activity of the proteins.
3. M2BAR A computational method developed by Fujitsu Laboratories for rapidly and accurately predicting the quantitative activity of a compound using multiple binding patterns.
4. High-precision activity prediction technology Software developed by Fujitsu Laboratories, comprised of MAPLECAFEE, a module that, based on molecular dynamics calculations, predicts the inhibitory activity of drug candidate compounds with a high level of precision that is equivalent to that of biochemical assays, and Force Field Formulator for Organic Molecules (FF-FOM), a module that generates highly detailed parameters for calculating the forces between atoms.
5. Conformational analysis A method of analyzing the relationship between a compound's conformation (three-dimensional structure) and its potential energy.

Most Popular Now

Most popular vitamin and mineral supplements provi…

The most commonly consumed vitamin and mineral supplements provide no consistent health benefit or harm, suggests a new study led by researchers at St. Michael's Hospital...

AstraZeneca heads to 2018 ASCO Annual Meeting with…

AstraZeneca and MedImmune, its global biologics research and development arm, head to the 2018 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, US...

Tiny particles could help fight brain cancer

Glioblastoma multiforme, a type of brain tumor, is one of the most difficult-to-treat cancers. Only a handful of drugs are approved to treat glioblastoma, and the median ...

New approach to immunotherapy leads to complete re…

A novel approach to immunotherapy developed by researchers at the National Cancer Institute (NCI) has led to the complete regression of breast cancer in a patient who was...

Spiolto® Respimat® enables greater physical activi…

Boehringer Ingelheim announced data which add to the growing body of evidence that show Spiolto® (tiotropium/olodaterol) Respimat® enables greater physical activity in pa...

Amgen Foundation and Harvard team up to offer free…

The Amgen Foundation and Harvard University today announced plans to launch a free online science education platform uniquely designed to level the playing field for aspi...

The Pfizer Foundation announces $5 million in gran…

The Pfizer Foundation announced a new $5 million grant commitment to initiatives in low- and middle-income countries that provide family planning access and education for...

Study finds antioxidant-enriched vitamin reduces r…

Researchers at Children's Hospital Colorado (Children's Colorado) and the University of Colorado School of Medicine have found that taking a specially formulated antioxid...

New drugs could also be deployed against lung and …

A new anti-cancer drug may be effective against a wider range of cancers than previously thought. Using a mouse model and samples taken from cancer patients, a team from ...

What would help or hinder patient participation in…

As clinical trials gear up with the aim of attaining the first FDA-approved treatments for mitochondrial disease, a new study reports for the first time what patients and...

Pfizer to expand venture investing with $600 milli…

Pfizer Inc. (NYSE:PFE) today announced it plans to invest $600 million in biotechnology and other emerging growth companies through Pfizer Ventures, the company’s venture...

Update on Phase III clinical trials of lanabecesta…

AstraZeneca and Eli Lilly and Company (Lilly) are discontinuing the global Phase III clinical trials of lanabecestat, an oral beta secretase cleaving enzyme (BACE) inhibi...