Boehringer Ingelheim expands collaboration with Vanderbilt University to tackle some of the most difficult-to-treat cancers

Boehringer IngelheimBoehringer Ingelheim has announced a new collaboration with Vanderbilt University, Nashville, Tennessee. The multi-year program complements an already existing collaboration by focusing on the research and development of small molecule compounds targeting the protein SOS (Son Of Sevenless). This molecule activates KRAS, a molecular switch that plays a central role in the onset of some of the deadliest cancers.

The collaboration combines pioneering research in the laboratory of Stephen W. Fesik, Orrin H. Ingram II professor in cancer research at Vanderbilt University, with the unique expertise and strength of Boehringer Ingelheim in drug discovery and clinical development. The new collaboration adds to an ongoing joint project with Vanderbilt University initiated in 2015 that achieved two major milestones by identifying lead compounds that bind to KRAS with high affinities. These discoveries raise the prospect of developing novel cancer treatment options based on molecules that are able to block this critical cancer driver.

"We are very encouraged by the successful identification of inhibitors of KRAS in our alliance with Professor Fesik and his team at Vanderbilt University and look forward to expanding our collaboration," said Clive R. Wood, Ph.D., senior corporate vice president, discovery research at Boehringer Ingelheim. "With new technologies and the scientific discoveries made by Professor Fesik's laboratory, we believe the time is now right to step up research efforts to develop novel cancer treatments that work by attacking KRAS and associated signaling pathways."

"Professor Fesik is a pioneer in the discovery of small molecules that bind to and inhibit challenging drug target proteins. His partnership with Boehringer Ingelheim will expedite efforts to discover novel cancer treatments that work on KRAS," said Lawrence J. Marnett, Ph.D., the Mary Geddes Stahlman professor of cancer research, university professor of biochemistry and chemistry and dean of basic sciences for the Vanderbilt University School of Medicine.

Mutations in the genes that encode KRAS are among the most powerful and frequent cancer drivers. They contribute to some of the most aggressive and deadly cancers, including up to 25 percent of lung, 35-45 percent of colorectal and about 90 percent of pancreatic tumors. KRAS has been a particularly difficult protein to target and no effective treatments targeting KRAS have been developed since its discovery in human cancers more than 30 years ago. The development of the first molecules inhibiting KRAS activation promises huge potential for the development of improved cancer therapies, which would offer treating physicians unprecedented options to complement existing treatment regimens.

By researching multiple approaches including direct inhibition of KRAS and indirect inhibition via SOS, Boehringer Ingelheim aims to accelerate the discovery of novel targeted therapies. The new collaboration with Vanderbilt University further strengthens Boehringer Ingelheim's oncology pipeline, which focuses on tumor cell-directed cancer treatments, new approaches in immune oncology and their combinations. It underscores the companies’ commitment to pioneering emerging fields of research and working closely with its partners to accelerate the development of novel first-in-class, breakthrough medications that fit the needs of patients, caregivers and healthcare professionals.

About Boehringer Ingelheim in Oncology
Boehringer Ingelheim’s oncology research is driven by a passion to advance clinical practice and a determination to improve the lives of patients who are battling cancer. Through our own scientific innovation and partnerships, we are focused on discovering and providing novel best-in-class, breakthrough cancer medications that fit the needs of patients, caregivers and healthcare professionals. We have a clear strategy to become a leader in the field of lung cancer. Boehringer Ingelheim has successfully launched two products for NSCLC, which have been widely adopted and established as valuable additions to current clinical practice. Continuous insights and learnings from research and development are key parts of innovation and our way forward to advance clinical practice in lung cancer and other cancer types.

About Boehringer Ingelheim
Boehringer Ingelheim is one of the world's 20 leading pharmaceutical companies. Headquartered in Ingelheim, Germany, Boehringer Ingelheim operates presently with a total of some 50,000 employees worldwide.

The focus of the family-owned company, founded in 1885, is on researching, developing, manufacturing and marketing new medications of high therapeutic value for human and veterinary medicine.

Social responsibility is an important element of the corporate culture at Boehringer Ingelheim. This includes worldwide involvement in social projects through, for example, the initiative "Making More Health" while also caring for employees. Respect, equal opportunity and reconciling career and family form the foundation of mutual cooperation. The company also focuses on environmental protection and sustainability in everything it does.

In 2015, Boehringer Ingelheim achieved net sales of about 14.8 billion euros. R&D expenditure corresponds to 20.3 per cent of net sales.

Most Popular Now

GSK reaches agreement with Novartis to acquire ful…

GlaxoSmithKline plc (LSE/NYSE: GSK) today announces that it has reached an agreement with Novartis for the buyout of Novartis' 36.5% stake in their Consumer Healthcare Jo...

Canadian neuroscientists say daily ibuprofen can p…

A Vancouver-based research team led by Canada's most cited neuroscientist, Dr. Patrick McGeer, has successfully carried out studies suggesting that, if started early enou...

First proof a synthesized antibiotic is capable of…

A "game changing" new antibiotic which is capable of killing superbugs has been successfully synthesised and used to treat an infection for the first time - and could lea...

Merck partners with Medisafe to help improve medic…

Merck, a leading science and technology company, today announced a new collaboration with US-based Medisafe to help its cardiometabolic patients better manage medication ...

Phase III data in The Lancet show Novartis siponim…

Novartis today announced that the full results from the Phase III EXPAND study of oral, once-daily siponimod (BAF312) in secondary progressive multiple sclerosis (SPMS) w...

Taking a standard prostate cancer drug with food b…

By taking a high-cost drug with a low-fat meal - instead of on an empty stomach, as prescribed - prostate cancer patients could decrease their daily dose, prevent digesti...

North and south cooperation to combat tuberculosis

Tuberculosis can be cured and could be eradicated. For this to happen, however, patients have to receive the right treatment. Researchers at the Makerere University and t...

Boehringer Ingelheim and OSE Immunotherapeutics an…

Boehringer Ingelheim and OSE Immunotherapeutics, a biotechnology company focused on the development of innovative immunotherapies, have announced a collaboration and excl...

New immunotherapy for lung cancer shows promise of…

In a groundbreaking development, results from a recent clinical trial to treat lung cancer show that a novel immunotherapy combination is surprisingly effective at contro...

Personalized tumor vaccine shows promise in pilot …

A new type of cancer vaccine has yielded promising results in an initial clinical trial conducted at the Perelman School of Medicine at the University of Pennsylvania and...

Lokelma approved in the EU for the treatment of ad…

AstraZeneca today announced that the European Commission has granted marketing authorisation for Lokelma (formerly ZS-9, sodium zirconium cyclosilicate) for the treatment...

New targeted therapy schedule could keep melanoma …

Skin melanoma, a particularly insidious cancer, accounts for the vast majority skin cancer deaths and is one of the most common cancers in people under 30. Treatment for ...