Compound that kills drug-resistant fungi is isolated from ant microbiota

Antimicrobial and antifungal resistance, which describe the ability of bacteria and other pathogens to resist the effects of drugs to which they were once sensitive, is a major public health problem worldwide. A study published recently in the journal Nature Communications suggests that the solution may come from the tiny bodies of insects, or more accurately, from the microbiota that they host.

This innovative hypothesis was first proposed by Brazilian and US researchers as part of a collaborative project begun in 2014 with support from FAPESP and the US National Institutes of Health (NIH).

The idea was to isolate bacteria that live in symbiosis with leafcutting ants of the genus Atta and to look for natural compounds with the potential to yield new drugs (read more at: agencia.fapesp.br/19498).

By pursuing this strategy, a research group led by Monica Tallarico Pupo, Professor of Medicinal Chemistry at the University of São Paulo’s Ribeirão Preto School of Pharmaceutical Sciences (FCFRP-USP), and Jon Clardy, Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School in the US, discovered cyphomycin, which, when tested in vitro and in vivo, was shown to be capable of killing fungi that cause diseases in humans and are resistant to currently available drugs.

"It was an exciting discovery because it confirmed our hypothesis that the insect microbiota is a promising source for the isolation of compounds with antibacterial and antifungal activity. Of course, it's too soon to know whether cyphomycin will become a drug, but we’ve made sufficient progress to apply for a patent," Pupo told Agência FAPESP.

Many antibiotics, she added, originate from compounds produced by bacteria found in soil. Most of these bacteria belong to the genus Streptomyces. The researchers decided to investigate this same group of filamentous bacteria in insect bodies. Their hypothesis was that if the bacteria help insects defend against pathogens, they might play the same role in humans.

"Soil was thoroughly explored at the time the first antibiotics were discovered and produced," Pupo said. "We wanted to find a new ecological niche. We set out to confirm whether evolutionary pressure made the bacteria hosted by insects even more effective against pathogens."

Specimens were collected by collaborators from the US, Costa Rica and Panama. In addition to leafcutting ants of the tribe Attini, butterflies, wasps, bees and moths were included, for a total of 1,400 insects.

"In Brazil, more than 300 ant colonies were collected in the Cerrado [Brazilian savanna], Atlantic Rainforest and Amazon biomes. Cyphomycin was isolated in one specimen of the genus Cyphomyrmex collected on the University of São Paulo’s Ribeirão Preto campus," Pupo said.

After the insects were collected, the bacteria found in their bodies were isolated, purified in the laboratory, and tested in vitro against microorganisms that act as pathogens in humans. The species that proved most effective against these pathogens were selected for metabolomic analysis - to characterize the metabolites they produce and identify the most active of these - and for phylogenetic studies, in which gene sequencing indicated to what extent the insect-associated bacteria resembled the strains of Streptomyces that live in soil.

"We combined chemometrics and liquid chromatography coupled with mass spectrometry to profile the compounds produced by the insect microbiota. The aim was to identify the Streptomyces strains that produce a distinctive chemistry - in other words, to find compounds quite different from those synthesized by soil bacteria. In this way, we increased the likelihood of finding a genuinely innovative molecule," Pupo explained.

The compounds shown to be most effective by these rigorous methods were tested again, in vitro and in mice, against pathogens resistant to the drugs used in clinical practice.

According to Pupo, cyphomycin was not effective against bacteria but proved capable of combating infection by Aspergillus fumigatus, the fungus most frequently found in hospital-acquired infections and the cause of aspergillosis, a disease with an attributable mortality as high as 85% even after antifungal treatment.

When administered to laboratory animals, cyphomycin also combated infection by Candida glabrata and C. auris, fungi that cause candidiasis in humans and are resistant to existing drugs.

"Cyphomycin wasn’t the first compound with antimicrobial action identified in our project, but no others displayed this level of activity," Pupo said.

The part of the study that developed the chemical profile of the bacterial compounds was performed during the PhD research of Humberto Enrique Ortega Dominguez with FAPESP's support and supervision by Pupo at FCFRP-USP. During a postdoctoral research internship at the University of Wisconsin-Madison in the US, with supervision by Tim Bugni and a scholarship from FAPESP, Dominguez focused on metabolomic studies and isolated cyphomycin, finalizing its structural determination after his return to Brazil. The trials with mice were conducted by David Andes and his group at UW-Madison.

Weilan Gomes da Paixão Melo, a postdoctoral researcher with a scholarship from FAPESP, participated in insect collection and in microbiota isolation and identification. She also performed phylogenetic studies during a research internship in Cameron Currie's laboratory at UW-Madison.

Marc G Chevrette, Caitlin M Carlson, Humberto E Ortega, Chris Thomas, Gene E Ananiev, Kenneth J Barns, Adam J Book, Julian Cagnazzo, Camila Carlos, Will Flanigan, Kirk J Grubbs, Heidi A Horn, F Michael Hoffmann, Jonathan L Klassen, Jennifer J Knack, Gina R Lewin, Bradon R McDonald, Laura Muller, Weilan GP Melo, Adrián A Pinto-Tomás, Amber Schmitz, Evelyn Wendt-Pienkowski, Scott Wildman, Miao Zhao, Fan Zhang, Tim S Bugni, David R Andes, Monica T Pupo, Cameron R Currie.
The antimicrobial potential of Streptomyces from insect microbiomes.
Nature Communicationsvolume 10, Article number: 516 (2019). doi: 10.1038/s41467-019-08438-0.

Most Popular Now

AstraZeneca divests rights for Losec to Cheplaphar…

AstraZeneca has agreed to sell the global commercial rights, excluding China, Japan, the US and Mexico, for Losec (omeprazole) and associated brands to Cheplapharm Arznei...

Bayer, Brigham and Women’s Hospital, and Massachus…

Bayer and Partners HealthCare's founding members Brigham and Women's Hospital (BWH) and Massachusetts General Hospital (MGH) today announced the launch of a joint lab to ...

Amgen announces positive results from two Phase 3 …

Amgen (NASDAQ:AMGN) today announced that the results of a prespecified interim analysis of an open-label, randomized, controlled global multicenter Phase 3 trial (2012021...

Cause of antibiotic resistance identified

Scientists have confirmed for the first time that bacteria can change form to avoid being detected by antibiotics in the human body. Studying samples from elderly patient...

Brilinta monotherapy in high-bleeding risk patient…

New data from TWILIGHT, a Phase IV independent trial (funded by AstraZeneca), showed that in patients at high-bleeding risk who underwent PCI and completed 3 months of du...

Novartis and Microsoft announce collaboration to t…

Novartis announced an important step in reimagining medicine by founding the Novartis AI innovation lab and by selecting Microsoft as its strategic AI and data-science pa...

Bayer inks deals with eleven startups under G4A Di…

Bayer announced today that the company has signed collaboration agreements with eleven digital health startups. As part of the program, Bayer will support these startup c...

Ian Read to retire as Executive Chairman of Pfizer…

Following its regularly scheduled meeting, the Board of Directors of Pfizer Inc. (NYSE:PFE) today announced that Executive Chairman of the Board Ian C. Read has chosen to...

Discovery of new source of cancer antigens may exp…

For more than a decade, scientist Stephen Albert Johnston and his team at Arizona State University's Biodesign Institute have pooled their energies into an often scoffed-...

Pharmacists provide patient value in team-based ca…

With inhaler in hand, Dr. Cheng Yuet went over every detail to make sure the patient understood how the drug would control their COPD symptoms. Dr. Yuet is proving what a...

Chinese activists protest the use of traditional t…

In the West, the number of people challenging scientific authority has been growing in past decades. This has, among other things, led to a decline in the support for mas...

AI and big data predict which research will influe…

An artificial intelligence/machine learning model to predict which scientific advances are likely to eventually translate to the clinic has been developed by Ian Hutchins...