Muscle stem cells can drive cancer that arises in Duchenne muscular dystrophy

People with Duchenne muscular dystrophy (DMD) can develop an otherwise-rare muscle cancer, called rhabdomyosarcoma, due to the muscle cells' continuous work to rebuild the damaged tissue. However, little is known about how the cancer arises, hindering development of a treatment or test that could predict cancer risk.

Now, scientists from Sanford Burnham Prebys Medical Discovery Institute (SBP) have demonstrated that muscle stem cells may give rise to rhabdomyosarcoma that occurs during DMD - and identified two genes linked to the tumor's growth. The research, performed using a mouse model of severe DMD, helps scientists better understand how rhabdomyosarcoma develops in DMD - and indicates that ongoing efforts to develop treatments that stimulate muscle stem cells should consider potential cancer risk. The study was published in Cell Reports on January 15, 2019.

"Scientists, including our team, are interested in harnessing muscle stem cells' inherent power to generate new muscle tissue to treat DMD. Thus, understanding the cell's behavior during disease is important so we know how to use the cells most effectively," says Alessandra Sacco, Ph.D., senior author of the paper and associate professor in the Development, Aging and Regeneration Program at SBP. "In addition to deepening our understanding of how this cancer may occur in DMD, our findings highlight the importance of careful assessment of muscle stem cells' health when developing potential DMD treatments."

DMD is a genetic condition caused by a lack of dystrophin, a protein that strengthens muscles. The condition causes progressive muscle degeneration and primarily affects boys, with symptoms often beginning between the ages of 3 and 5. With recent medical advances, children with DMD are now surviving beyond their teenage years into their early 30s, but effective treatments are still needed.

In the study, the scientists found that mice with more severe DMD developed rhabdomyosarcoma sooner, indicating that increased muscle degeneration promotes cancer development. Next, they isolated several cells involved in muscle regeneration from mice with severe DMD and tested their ability to become tumors. In contrast to the other cells, muscle stem cells had an increased ability to replicate (self-renew) and formed tumors when grown independently. The muscle stem cells also showed early signs they would develop into tumors, including increased self-renewal, accumulation of DNA damage and gene expression patterns similar to those seen in human rhabdomyosarcoma.

Using RNA sequencing, the scientists also identified two genes associated with the tumor's growth, Ccl11 and Rgs5, which are involved in inflammation and wound healing. When the scientists added Ccl11 and Rgs5 proteins to tumor cells, it reduced their growth--indicating these genes are involved in the growth of the cancer.

"As a next step, we'd like to further elucidate how exactly these two genes are supporting tumor growth," says Sacco. "This research might yield molecular targets that could lead to treatments for rhabdomyosarcoma in DMD."

Francesca Boscolo Sesillo, David Fox, Alessandra Sacco.
Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy.
Cell Reports, January 22, 2019. doi: https://doi.org/10.1016/j.celrep.2018.12.089.

Most Popular Now

Compound that kills drug-resistant fungi is isolat…

Antimicrobial and antifungal resistance, which describe the ability of bacteria and other pathogens to resist the effects of drugs to which they were once sensitive, is a...

Novartis receives FDA approval for Mayzent® (sipon…

Novartis today announced that the US Food and Drug Administration (FDA) has approved Mayzent® (siponimod) for the treatment of adults with relapsing forms of multiple scl...

First bacterial genome created entirely with a com…

All the genome sequences of organisms known throughout the world are stored in a database belonging to the National Center for Biotechnology Information in the United Sta...

Liver, colon cancer cells thwarted by compounds de…

The plant that adds flavor, color and bitterness to beer also produces a primary compound that thwarts cancer cells, and two important derivatives of the compound do as w...

Immune cells fighting blood cancer visualized for …

When cancer escapes the immune system, our defenses are rendered powerless and are unable to fight against the disease. Chimeric antigen receptor T cells (CAR T cells) re...

Clinical trial finds therapy to be well-tolerated …

A phase I clinical trial that set out to assess the safety of a new combination therapy for a type of aggressive brain tumour has found the treatment to be well tolerated...

FDA approves treatment for patients with a type of…

The U.S. Food and Drug Administration today approved Cimzia (certolizumab pegol) injection for treatment of adults with a certain type of inflammatory arthritis called no...

Selumetinib granted US Breakthrough Therapy Design…

AstraZeneca and MSD, Inc., Kenilworth, NJ, US (MSD: known as Merck & Co., Inc. inside the US and Canada) today announced that the US Food and Drug Administration (FDA) ha...

Boehringer Ingelheim announces FDA and EMA regulat…

Boehringer Ingelheim has filed for regulatory approval of nintedanib in patients with systemic sclerosis associated interstitial lung disease (SSc-ILD) with the FDA and E...

Novartis adds clinical and preclinical anti-inflam…

Novartis announced that it is adding to its broad portfolio of immunomodulatory medicines with the planned acquisition of IFM Tre, a subsidiary of IFM Therapeutics LLC fo...

Novartis continues transformation into a leading m…

Novartis today completed the spin-off of the Alcon eye care devices business through a dividend-in-kind distribution to holders of Novartis shares and ADRs (American Depo...

Forxiga approved in Japan for type-1 diabetes

The Japanese Ministry of Health, Labour and Welfare (MHLW) has approved Forxiga (dapagliflozin) as an oral adjunct treatment to insulin for adults with type-1 diabetes (T...