New Parkinson's disease drug target revealed through study of fatty acids

The human brain is rich in lipids. Investigators studying Parkinson's disease (PD) have become increasingly interested in lipids since both molecular and genetic studies have pointed to the disruption of the balance of the brain's lipids as a potentially critical contributor to this disease. Beginning in yeast and moving through various model organisms and human cells, a new study led by investigators from Brigham and Women's Hospital and Harvard Medical School has provided insights into the role of fatty acids and suggests that inhibiting a specific enzyme can protect against neurotoxicity. Their findings, which point to a novel therapeutic approach that could be developed to treat PD and some forms of Alzheimer's disease, are published in Molecular Cell.

"People have been aware for many years of some connection between Parkinson's disease and the brain's lipids," said lead author Saranna Fanning, PhD, of the Ann Romney Center for Neurologic Diseases at the Brigham and Harvard Medical School. "Through this collaborative effort, beginning with yeast models in the Lindquist lab and in the Selkoe and Dettmer labs leveraging rat cortical neurons and human cortical neurons, we've identified a pathway and a therapeutic target that no one has pursued before."

Fanning's work began in the lab of the Whitehead Institute's Susan Lindquist, PhD, who passed away in 2016. She performed unbiased lipidomic profiling, measuring lipids and fatty acid changes in yeast that had been engineered to produce α-synuclein, a protein that forms the hallmark Lewy body clumps of PD. An increase was identified in the constituents of the neutral lipids pathway, including a monounsaturated fatty acid known as oleic acid. This finding was then replicated in rodent and human neuronal models, including patient cell lines, by Fanning and colleagues in the labs of co-senior authors Dennis Selkoe, MD, and Ulf Dettmer, PhD, at the Brigham. Additional experiments were carried out in the roundworm C. elegans, another classic model organism.

"It was fascinating to see how excess αS had such consistent effects on the neutral lipid pathway across model organisms, from simple baker's yeast and cultured rodent neurons to cells derived from PD patients that carry extra copies of α-synuclein in their genome. All our models clearly pointed at oleic acid as a mediator of α-synuclein toxicity," said Dettmer.

The team also measured signs of neurotoxicity in their models, looking for ways to target fatty acids or the pathways involved in their generation that would offer protection from PD. The researchers found that suppressing an enzyme known as stearoyl-CoA-desaturase (SCD), which helps generate oleic acid and other monounsaturated fatty acids, was protective, suggesting that SCD may be a promising therapeutic target.

While not currently used in the clinic, multiple inhibitors of SCD exist today and are used in research labs. Additional follow-up studies will be required to determine how well such testing begins in humans.

"The identification of SCD as an enzyme which contributes to α-synuclein-mediated lipid changes and neurotoxicity presents a unique opportunity for small-molecule therapies to inhibit the enzyme in models of PD and, ultimately, in human diseases," said Selkoe.

Saranna Fanning, Aftabul Haque, Thibaut Imberdis, Valeriya Baru, M Inmaculada Barrasa, Silke Nuber, Daniel Termine, Nagendran Ramalingam, Gary P H Ho, Tallie Noble, Jackson Sandoe, Yali Lou, Dirk Landgraf, Yelena Freyzon, Gregory Newby, Frank Soldner, Elizabeth Terry-Kantor, Tae-Eun Kim, Harald F Hofbauer, Michel Becuwe, Rudolf Jaenisch, David Pincus, Clary B Clish, Tobias C Walther, Robert V Farese Jr, Supriya Srinivasan, Michael A Welte, Sepp D Kohlwein, Ulf Dettmer, Susan Lindquist, Dennis Selkoe.
Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment.
Molecular Cell, 4 December 2018. doi: 10.1016/j.molcel.2018.11.028.

Most Popular Now

Study finds lack of racial diversity in cancer dru…

New research published in JAMA Oncology has found a lack of racial and ethnic diversity in clinical trials for cancer drugs. The study - conducted by researchers from UBC...

Preventing tumor metastasis

Researchers at the Paul Scherrer Institute, together with colleagues from the pharmaceutical company F. Hoffmann-La Roche AG, have taken an important step towards the dev...

A new drug could revolutionize the treatment of ne…

The international team of scientists from Gero Discovery LLC, the Institute of Biomedical Research of Salamanca, and Nanosyn, Inc. has found a potential drug that may pre...

Interactions discovered in cells insulating nerve …

Schwann cells form a protective sheath around nerve fibres and ensure that nerve impulses are transmitted rapidly. If these cells are missing or damaged, severe neurologi...

Anniversary of the pivotal RE-LY® trial marks a de…

Boehringer Ingelheim today announces the ten-year anniversary of the RE-LY® trial publication(1-3) recognising the contribution made in the decade since by patients, heal...

AstraZeneca agrees to buy US FDA Priority Review V…

AstraZeneca announced that it has agreed to buy a US Food and Drug Administration (FDA) Priority Review Voucher (PRV) for a total cash consideration of $95m from a subsid...

Breast cancer can form 'sleeper cells' after drug …

Breast cancer medicines may force some cancer cells into 'sleeper mode', allowing them to potentially come back to life years after initial treatment. These are the early...

Pfizer invests half billion dollars to advance sta…

Pfizer announced an additional half billion dollar investment for the construction of its state-of-the-art gene therapy manufacturing facility in Sanford, North Carolina...

The Pfizer Foundation invests in 20 organizations …

The Pfizer Foundation announced 20 grants* to help non-governmental organizations (NGOs), non-profits and social enterprises address critical health challenges related to...

FDA grants Fast Track designation for Farxiga in c…

AstraZeneca today announced that the US Food and Drug Administration (FDA) has granted Fast Track designation for the development of Farxiga (dapagliflozin) to delay the ...

Amgen and Allergan announce positive top-line resu…

Amgen (NASDAQ:AMGN) and Allergan plc. (NYSE:AGN) today announced positive top-line results from a comparative clinical study evaluating the efficacy and safety of ABP 798...

Experimental validation confirms the ability of ar…

Insilico Medicine, a global leader in artificial intelligence for drug discovery, announced the publication of a paper titled, "Deep learning enables rapid identification...