Researchers develop a new method for turning skin cells into pluripotent stem cells

Our bodies consist of many different kinds of cells, each with their own role. The Japanese scientist Shinya Yamanaka had made earlier the discovery, earning the Nobel Prize in 2012, that cells from adult skin can be converted to cells typical of early embryos, so-called induced pluripotent stem cells (iPSC). This process is called reprogramming.

Up till now, reprogramming has only been possible by introducing the critical genes for the conversion, called Yamanaka factors, artificially into skin cells where they are not normally active at all.

Professor Timo Otonkoski at the University of Helsinki and Professor Juha Kere at Karolinska Institutet and King's College London, with their teams of researchers, have now for the first time succeeded in converting skin cells into pluripotent stem cells by activating the cell's own genes. This was achieved by using gene editing technology - called CRISPRa - that can be directed to activate genes. The method utilizes a blunted version of the Cas9 'gene scissors' that does not cut DNA and can therefore be used to activate gene expression without mutating the genome.

"CRISPR/Cas9 can be used to activate genes. This is an attractive possibility for cellular reprogramming because multiple genes can be targeted at the same time. Reprogramming based on activation of endogenous genes rather than overexpression of transgenes is also theoretically a more physiological way of controlling cell fate and may result in more normal cells. In this study, we show that it is possible to engineer a CRISPR activator system that allows robust reprogramming of iPSC", tells Professor Otonkoski.

An important key for the success was also activating a critical genetic element that was earlier found to regulate the earliest steps of human embryo development after fertilization. "Using this technology, pluripotent stem cells were obtained that resembled very closely typical early embryonal cells", Professor Kere says.

The discovery also suggests that it might be possible to improve many other reprogramming tasks by addressing genetic elements typical of the intended target cell type.

"The technology may find practical use in bio banking and many other tissue technology applications", says PhD student, MSc Jere Weltner, the first author of the article published in Nature Communications. "In addition, the study opens up new insights into the mechanisms controlling early embryonic gene activation."

Jere Weltner, Diego Balboa, Shintaro Katayama, Maxim Bespalov, Kaarel Krjutškov, Eeva-Mari Jouhilahti, Ras Trokovic, Juha Kere, Timo Otonkoski.
Human pluripotent reprogramming with CRISPR activators.
Nature Communicationsvolume 9, Article number: 2643 (2018). doi: 10.1038/s41467-018-05067-x.

Most Popular Now

Forxiga receives positive EU CHMP opinion for the …

The Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has recommended a new indication for the marketing authorisation of Forxi...

Merck Granted U.S. Patent for novel combination of…

Merck, a leading science and technology company, today announced that it has been granted Patent No. US 10,193,695 by the United States Patent and Trademark Office (USPTO...

Pfizer receives positive CHMP opinion for Vizimpro…

Pfizer today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has adopted a positive opinion recommending V...

US FDA grants Breakthrough Therapy Designation for…

AstraZeneca and its global biologics research and development arm, MedImmune, today announced that the US Food and Drug Administration (FDA) has granted Breakthrough Ther...

Merck to expand US biopharmaceutical R&D facil…

Merck, a leading science and technology company, today announced a $70 million investment to expand its state of the art research and development (R&D) facility in Biller...

Amgen and UCB receive positive vote from FDA Advis…

Amgen (NASDAQ:AMGN) and UCB (Euronext Brussels: UCB) announced strong support from the U.S. Food and Drug Administration (FDA) Bone, Reproductive and Urologic Drugs Advis...

New pill can deliver insulin

An MIT-led research team has developed a drug capsule that could be used to deliver oral doses of insulin, potentially replacing the injections that people with type 2 di...

Pfizer and Lilly announce top-line results from se…

Pfizer Inc. (NYSE:PFE) and Eli Lilly and Company (NYSE:LLY) today announced positive top-line results from a Phase 3 study evaluating tanezumab 2.5 mg or 5 mg in patients...

Merck and Tencent announce collaboration on intell…

Merck, a leading science and technology company, signed a strategic collaboration agreement with Tencent, a leading provider of Internet value added services. The collabo...

Cannabinoid compounds may inhibit growth of colon …

Medical marijuana has gained attention in recent years for its potential to relieve pain and short-term anxiety and depression. Now, Penn State College of Medicine resear...

Researchers call for big data infrastructure to su…

Researchers from the George Washington University (GW), the U.S. Food and Drug Administration (FDA), and industry leaders published in PLOS Biology, describing a standard...

New computational method reduces risk of drug form…

One major factor that determines the efficacy of a drug is the structure that its molecules form in a solid state. Changed molecular structures can entail that pills stop...