Researchers identify chemical compound that inhibits Ebola virus replication

An organic chemical compound shows effective antiviral activity against Ebola virus and several other viruses, according to a study led by Georgia State University. The researchers found benzoquinoline inhibited the ability of Ebola virus to multiply and reproduce in cell culture. The findings are published in the journal Antiviral Research.

Ebola virus, a member of the filovirus family, is an enveloped, single-stranded RNA virus that causes severe disease in humans. The largest outbreak on record for the filovirus family was caused by Ebola virus in West Africa between 2013 and 2016, resulting in more than 28,000 infections and more than 11,000 deaths.

Only experimental treatments were available, and survivors, including health care workers, are at risk for persistent infections from the virus remaining in sites that can tolerate foreign substances without eliciting an inflammatory immune response, such as the eye and testes. There are no approved drugs to treat Ebola virus or other filovirus infections, so there is a critical need for new therapeutic approaches. A potential antiviral target is the viral machinery and activities involved in carrying out RNA synthesis for Ebola virus.

"This work provides a foundation for the development of novel antiviral agents to combat Ebola virus," said Dr. Christopher Basler, director of the Center for Microbial Pathogenesis and professor in the Institute for Biomedical Sciences at Georgia State and a Georgia Research Alliance Eminent Scholar in Microbial Pathogenesis.

In this study, the researchers screened a library of 200,000 small molecule compounds to identify potential inhibitors of Ebola virus RNA synthesis. They identified 56 hits that inhibited Ebola virus activity by more than 70 percent, while showing less than a 20 percent chance of being toxic to cells. They discovered three chemical structures with potent antiviral activity against Ebola virus in cell culture.

Human lung epithelial cells and human embryonic kidney cells were exposed to several viruses, Ebola virus, Marburg virus, vesicular stomatitis virus and Zika virus, and the antiviral effects of the three chemical structures were observed.

One of these chemical structures, benzoquinoline, showed antiviral activity against Ebola virus and was also active against another deadly filovirus, Marburg virus. Benzoquinoline was also effective against vesicular stomatitis virus from the rhabdovirus family, which can infect insects, cattle, horses and pigs, and Zika virus, which is spread to humans by mosquitoes.

"This study is part of a larger effort to find new therapies to treat highly dangerous Ebola virus infections," said lead author Dr. Priya Luthra of Georgia State.

Luthra P, Liang J, Pietzsch CA, Khadka S, Edwards MR, Wei S, De S, Posner B, Bukreyev A, Ready JM, Basler CF.
A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication.
Antiviral Res. 2018 Feb;150:193-201. doi: 10.1016/j.antiviral.2017.12.019.

Most Popular Now

Compound that kills drug-resistant fungi is isolat…

Antimicrobial and antifungal resistance, which describe the ability of bacteria and other pathogens to resist the effects of drugs to which they were once sensitive, is a...

Novartis receives FDA approval for Mayzent® (sipon…

Novartis today announced that the US Food and Drug Administration (FDA) has approved Mayzent® (siponimod) for the treatment of adults with relapsing forms of multiple scl...

First bacterial genome created entirely with a com…

All the genome sequences of organisms known throughout the world are stored in a database belonging to the National Center for Biotechnology Information in the United Sta...

Liver, colon cancer cells thwarted by compounds de…

The plant that adds flavor, color and bitterness to beer also produces a primary compound that thwarts cancer cells, and two important derivatives of the compound do as w...

Immune cells fighting blood cancer visualized for …

When cancer escapes the immune system, our defenses are rendered powerless and are unable to fight against the disease. Chimeric antigen receptor T cells (CAR T cells) re...

Clinical trial finds therapy to be well-tolerated …

A phase I clinical trial that set out to assess the safety of a new combination therapy for a type of aggressive brain tumour has found the treatment to be well tolerated...

FDA approves treatment for patients with a type of…

The U.S. Food and Drug Administration today approved Cimzia (certolizumab pegol) injection for treatment of adults with a certain type of inflammatory arthritis called no...

Selumetinib granted US Breakthrough Therapy Design…

AstraZeneca and MSD, Inc., Kenilworth, NJ, US (MSD: known as Merck & Co., Inc. inside the US and Canada) today announced that the US Food and Drug Administration (FDA) ha...

Boehringer Ingelheim announces FDA and EMA regulat…

Boehringer Ingelheim has filed for regulatory approval of nintedanib in patients with systemic sclerosis associated interstitial lung disease (SSc-ILD) with the FDA and E...

Novartis adds clinical and preclinical anti-inflam…

Novartis announced that it is adding to its broad portfolio of immunomodulatory medicines with the planned acquisition of IFM Tre, a subsidiary of IFM Therapeutics LLC fo...

Novartis continues transformation into a leading m…

Novartis today completed the spin-off of the Alcon eye care devices business through a dividend-in-kind distribution to holders of Novartis shares and ADRs (American Depo...

Forxiga approved in Japan for type-1 diabetes

The Japanese Ministry of Health, Labour and Welfare (MHLW) has approved Forxiga (dapagliflozin) as an oral adjunct treatment to insulin for adults with type-1 diabetes (T...