Researchers computationally find the needle in a haystack to treat rare diseases

One in 10 people in America is fighting a rare disease, or a disorder that affects fewer than 200,000 Americans. Although there are more than 7,000 rare diseases that collectively affect more than 350 million people worldwide, it is not profitable for the pharmaceutical industry to develop new therapies to treat the small number of people suffering from each rare condition. Researchers at the LSU Computational Systems Biology group have developed a sophisticated and systematic way to identify existing drugs that can be repositioned to treat a rare disease or condition. They have fine-tuned a computer-assisted drug repositioning process that can save time and money in helping these patients receive effective treatment.

"Rare diseases sometimes affect such a small population that discovering treatments would not be financially feasible unless through humanitarian and governmental incentives. These conditions that are sometimes left untreated are labeled 'orphan diseases.' We developed a way to computationally find matches between rare disease protein structures and functions and existing drug interactions that can help treat patients with some of these orphan diseases," said Misagh Naderi, one of the paper's lead authors and a doctoral candidate in the LSU Department of Biological Sciences.

This research will be published this week in the npj Systems Biology and Applications journal, published by the Nature Publishing Group in partnership the Systems Biology Institute.

"In the past, most repurposed drugs were discovered serendipitously. For example, the drug amantadine was first introduced to treat respiratory infections. However, a few years later, a patient with Parkinson's disease experienced a dramatic improvement of her disease symptoms while taking the drug to treat the flu. This observation sparked additional research. Now, amantadine is approved by the Food Drug Administration as both an antiviral and an antiparkinsonian drug. But, we can not only rely on chance to find a treatment for an orphan disease," said Dr. Michal Brylinski, the head of the Computational Systems Biology group at LSU.

To systematize drug repurposing, Naderi, co-author Rajiv Gandhi Govindaraj and colleagues combined eMatchSite, a software developed by the same group with virtual screening to match FDA approved drugs and proteins that are involved in rare diseases. LSU super computers allows them to test millions of possibilities that will cost billions of dollars to test in the lab.

Rajiv Gandhi Govindaraj, Misagh Naderi, Manali Singha, Jeffrey Lemoine & Michal Brylinski.
Large-scale computational drug repositioning to find treatments for rare diseases.
npj Systems Biology and Applications (2018) 4:13. doi: 10.1038/s41540-018-0050-7.

Most Popular Now

Delivering insulin in a pill

Given the choice of taking a pill or injecting oneself with a needle, most of us would opt to regulate a chronic health condition by swallowing a pill. But for millions o...

Probiotics can protect the skeletons of older wome…

For the first time in the world, researchers at the University of Gothenburg, Sweden, have demonstrated that probiotics, dietary supplements with health-promoting bacteri...

Alzheimer's breakthrough: Brain metals that may dr…

Alzheimer's disease could be better treated, thanks to a breakthrough discovery of the properties of the metals in the brain involved in the progression of the neurodegen...

Can aspirin treat Alzheimer's?

A regimen of low-dose aspirin potentially may reduce plaques in the brain, which will reduce Alzheimer's disease pathology and protect memory, according to neurological r...

FDA approves first drug comprised of an active ing…

The U.S. Food and Drug Administration today approved Epidiolex (cannabidiol) [CBD] oral solution for the treatment of seizures associated with two rare and severe forms o...

In mice, stem cells seem to work in fighting obesi…

Obesity is an increasing global health problem associated with several comorbidities and a high risk of mortality. A wide spectrum of interventions has been proposed for ...

FDA takes steps to foster greater efficiency in bi…

Today, the agency withdrew the draft guidance, "Statistical Approaches to Evaluate Analytical Similarity," issued in September 2017. The draft guidance, if finalized as w...

Research shows how a moderate dose of alcohol prot…

For at least 20 years, research has shown that for many people, moderate consumption of alcohol can protect the heart, but the reason for this is poorly understood. A stu...

Some existing anti-cancer drugs may act in part by…

Bolstering the notion that RNA should be considered an important drug-discovery target, scientists at Scripps Research have found that several existing, FDA-approved anti...

'Kiss of death' cancer

It's called the 'kiss of death'. Triple negative breast cancer has no targeted drug therapy and, as such, the only hope for these patients is chemotherapy. Triple negativ...

Novartis Clear about Psoriasis survey data highlig…

Novartis announced today the publication of global Clear about Psoriasis survey data in the Journal of the European Academy of Dermatology and Venereology[1]. The publica...

Poliovirus therapy for recurrent glioblastoma has …

A genetically modified poliovirus therapy developed at Duke Cancer Institute shows significantly improved long-term survival for patients with recurrent glioblastoma, wit...