Drug-producing bacteria possible with synthetic biology breakthrough

Bacteria could be programmed to efficiently produce drugs, thanks to breakthrough research into synthetic biology using engineering principles, from the University of Warwick and the University of Surrey. Led by the Warwick Integrative Synthetic Biology Centre at Warwick's School of Engineering and the Faculty of Health and Medical Sciences at the University of Surrey, new research has discovered how to dynamically manage the allocation of essential resources inside engineered cells - advancing the potential of synthetically programming cells to combat disease and produce new drugs.

The researchers have developed a way to efficiently control the distribution of ribosomes - microscopic 'factories' inside cells that build proteins that keep the cell alive and functional - to both the synthetic circuit and the host cell.

Synthetic circuitry can be added to cells to enhance them and make them perform bespoke functions - providing vast new possibilities for the future of healthcare and pharmaceuticals, including the potential for cells specially programmed to produce novel antibiotics and other useful compounds.

A cell only has a finite amount of ribosomes, and the synthetic circuit and host cell in which the circuitry is inserted both compete for this limited pool of resources. It is essential that there are enough ribosomes for both, so they can survive, multiply and thrive. Without enough ribosomes, either the circuit will fail, or the cell will die - or both.

Using the engineering principal of a feedback control loop, commonly used in aircraft flight control systems, the researchers have developed and demonstrated a unique system through which ribosomes can be distributed dynamically - therefore, when the synthetic circuit requires more ribosomes to function properly, more will be allocated to it, and less allocated to the host cell, and vice versa.

Declan Bates, Professor of Bioengineering at the University of Warwick's School of Engineering and Co-Director, Warwick Integrative Synthetic Biology Centre (WISB) commented: "Synthetic Biology is about making cells easier to engineer so that we can address many of the most important challenges facing us today - from manufacturing new drugs and therapies to finding new biofuels and materials. It's been hugely exciting in this project to see an engineering idea, developed on a computer, being built in a lab and working inside a living cell."

José Jiménez, Lecturer in Synthetic Biology at the University of Surrey's Faculty of Health and Medical Sciences: "The ultimate goal of the selective manipulation of cellular functions like the one carried out in this project is to understand fundamental principles of biology itself. By learning about how cells operate and testing the constraints under which they evolve, we can come up with ways of engineering cells more efficiently for a wide range of applications in biotechnology."

Ribosomes live inside cells, and construct proteins when required for a cellular function. When a cell needs protein, the nucleus creates mRNA, which is sent to the ribosomes - which then synthesise the essential proteins by bonding the correct amino acids together in a chain.

Based on an original idea arising from discussions between Alexander Darlington, a PhD candidate at the University of Warwick, and Dr. Jiménez, the theory of dynamically allocating resources in cells was tested and analysed with mathematical modelling at Warwick, and then built and demonstrated in the laboratory at the University of Surrey.

Alexander PS Darlington, Juhyun Kim, José I Jiménez, Declan G Bates.
Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes.
Nature Communicationsvolume 9, Article number: 695 (2018). doi: 10.1038/s41467-018-02898-6.

Most Popular Now

Cannabis extract helps reset brain function in psy…

Research from King's College London has found that a single dose of the cannabis extract cannabidiol can help reduce brain function abnormalities seen in people with psyc...

For first time in 40 years, cure for acute leukemi…

Acute myeloid leukemia is one of the most aggressive cancers. While other cancers have benefitted from new treatments, there has been no encouraging news for most leukemi...

New cancer treatment uses enzymes to boost immune …

Researchers at The University of Texas at Austin have developed a new approach to treating cancer using enzyme therapy. The enzyme, PEG-KYNase, does not directly kill can...

Bayer accelerates six new startups

Changing the experience of health: that's the focus of the six startups which the Bayer G4A team has included in the Accelerator program this year. The young companies fr...

Novartis receives European Commission approval of …

Novartis today announced that the European Commission (EC) has approved Kymriah® (tisagenlecleucel, formerly CTL019). The approved indications are for the treatment of pe...

Shire completes sale of oncology franchise

Shire plc (LSE: SHP, NASDAQ: SHPG) announces today that it has completed the sale of its Oncology franchise to Servier S.A.S. for $2.4 billion. The franchise includes the...

Antioxidant reduces risk for second heart attack, …

Doctors have long known that in the months after a heart attack or stroke, patients are more likely to have another attack or stroke. Now, a paper in the Journal of the A...

Novartis to divest the Sandoz US dermatology busin…

Novartis today announced it has agreed to sell selected portions of its Sandoz US portfolio, specifically the Sandoz US dermatology business and generic US oral solids po...

New tablet production facility in Ingelheim: Cente…

Boehringer Ingelheim held a groundbreaking ceremony for the construction of a new production facility for innovative drugs. This new Solids Launch facility will focus on ...

SOLAR-1 trial of Novartis investigational alpha-sp…

Novartis today announced the global Phase III SOLAR-1 trial evaluating the investigational alpha-specific PI3K inhibitor BYL719 (alpelisib) has met the primary endpoint s...

Tezepelumab granted Breakthrough Therapy Designati…

AstraZeneca and its partner Amgen Inc. (Amgen) today announced that the US Food and Drug Administration (FDA) has granted Breakthrough Therapy Designation for tezepelumab...

Pfizer terminates domagrozumab (PF-06252616) clini…

Pfizer Inc. (NYSE: PFE) announced that it is terminating two ongoing clinical studies evaluating domagrozumab (PF-06252616) for the treatment of Duchenne muscular dystrop...