Potential new approach to the treatment of multiple sclerosis

A prospective new method of treating patients with multiple sclerosis has been proposed by researchers of the Mainz University Medical Center working in cooperation with researchers of the University of Montreal. In model trials and experiments employing human endothelial cells, they discovered that the EGFL7 protein hinders the migration of immune cells into the central nervous system by stabilizing the blood-brain barrier. These findings have recently been published in Nature Communications.

The autoimmune disease multiple sclerosis (MS) is one of the most common disorders that cause disabilities in young adults in industrialized countries. In MS, the body's own immune system attacks the central nervous system (CNS). Immune cells (T cells) cross the blood-brain barrier, i.e., the physiological barrier between the blood circulatory system and the CNS, enter the brain, and damage the protective covering of the nerve fibers, the myelin layer. This results in the degeneration and loss of function of nerve cells and leads to neurological disability-related symptoms.

The primary aim of MS research is to develop new treatments that will prevent this pathological process. Putting the EGFL7 protein at the focus of their research, the team led by Dr. Timo Uphaus and Professor Frauke Zipp of the Department of Neurology at the University Medical Center of Johannes Gutenberg University Mainz collaborated with Dr. Catherine Larochelle of the University of Montreal and Professor Mirko Schmidt and researchers of the German Cancer Consortium (DKTK). They chose a completely innovative pathophysiological-based approach as EGFL7 had not previously been considered of relevance to MS research. However, it has been shown, for example in the case of breast cancer, that EGFL7 does have an influence on the migration of immune cells into tumor tissue. Since the migration of immune cells into the brain plays a significant role in MS, the researchers decided to investigate this protein and whether it could also have an effect on the autoimmune disorder. Notably, on the basis of their results they were able to demonstrate a possible new approach to successfully treat MS.

The researchers discovered that CNS inflammation was accompanied by an increased release of EGFL7. Immune cells subsequently bind to EGFL7, in a sense being taken prisoner so that they are prevented from crossing into the CNS. EGFL7 is released by the endothelial cells of the blood-brain barrier and causes immune cells to be retained in the perivascular space. In their model trials, the researchers next found that exposure to EGLF7 makes the blood-brain barrier less permeable. In the presence of this more effective barrier, the passage of immune cells into the CNS was reduced. This counteracted the corresponding pathological mechanisms and thus led to improvements in clinical symptoms.

Furthermore, the researchers were able to confirm their experimental findings in a human blood-brain barrier model, where there was also decreased migration of immune cells in isolated human endothelial cells. They now conclude that it might be possible in principle to take advantage of the way that EGFL7 inhibits the migration of immune cells into the CNS and enhances the impenetrability of the blood-brain barrier for the treatment of multiple sclerosis.

Catherine Larochelle, Timo Uphaus, Bieke Broux, Elizabeth Gowing, Magdalena Paterka, Laure Michel, Nevenka Dudvarski Stankovic, Frank Bicker, Florent Lemaître, Alexandre Prat, Mirko H. H. Schmidt, Frauke Zipp.
EGFL7 reduces CNS inflammation in mouse.
Nature Communicationsvolume 9, Article number: 819 (2018). doi: 10.1038/s41467-018-03186-z.

Most Popular Now

Cannabis extract helps reset brain function in psy…

Research from King's College London has found that a single dose of the cannabis extract cannabidiol can help reduce brain function abnormalities seen in people with psyc...

For first time in 40 years, cure for acute leukemi…

Acute myeloid leukemia is one of the most aggressive cancers. While other cancers have benefitted from new treatments, there has been no encouraging news for most leukemi...

New cancer treatment uses enzymes to boost immune …

Researchers at The University of Texas at Austin have developed a new approach to treating cancer using enzyme therapy. The enzyme, PEG-KYNase, does not directly kill can...

Bayer accelerates six new startups

Changing the experience of health: that's the focus of the six startups which the Bayer G4A team has included in the Accelerator program this year. The young companies fr...

Novartis receives European Commission approval of …

Novartis today announced that the European Commission (EC) has approved Kymriah® (tisagenlecleucel, formerly CTL019). The approved indications are for the treatment of pe...

Shire completes sale of oncology franchise

Shire plc (LSE: SHP, NASDAQ: SHPG) announces today that it has completed the sale of its Oncology franchise to Servier S.A.S. for $2.4 billion. The franchise includes the...

Antioxidant reduces risk for second heart attack, …

Doctors have long known that in the months after a heart attack or stroke, patients are more likely to have another attack or stroke. Now, a paper in the Journal of the A...

Novartis to divest the Sandoz US dermatology busin…

Novartis today announced it has agreed to sell selected portions of its Sandoz US portfolio, specifically the Sandoz US dermatology business and generic US oral solids po...

New tablet production facility in Ingelheim: Cente…

Boehringer Ingelheim held a groundbreaking ceremony for the construction of a new production facility for innovative drugs. This new Solids Launch facility will focus on ...

SOLAR-1 trial of Novartis investigational alpha-sp…

Novartis today announced the global Phase III SOLAR-1 trial evaluating the investigational alpha-specific PI3K inhibitor BYL719 (alpelisib) has met the primary endpoint s...

Tezepelumab granted Breakthrough Therapy Designati…

AstraZeneca and its partner Amgen Inc. (Amgen) today announced that the US Food and Drug Administration (FDA) has granted Breakthrough Therapy Designation for tezepelumab...

Pfizer terminates domagrozumab (PF-06252616) clini…

Pfizer Inc. (NYSE: PFE) announced that it is terminating two ongoing clinical studies evaluating domagrozumab (PF-06252616) for the treatment of Duchenne muscular dystrop...