New research suggests your immune system can protect against MRSA infections

After years of investigation, researchers at Johns Hopkins, the University of California, Davis, and the National Institute of Allergy and Infectious Diseases have discovered how the immune system might protect a person from recurrent bacterial skin infections caused by Staphylococcus aureus (staph). The findings, publishing online in The Journal of Clinical Investigation, open new doors to someday developing vaccines to prevent staph skin infections, which account for 14 million outpatient visits, nearly 500,000 hospital admissions and $3 billion to $4 billion in inpatient health care costs in the U.S. per year.

"There's a huge, unmet clinical need for new approaches against staph skin infections because of declining antibiotic development and rising drug resistance," says Lloyd Miller, M.D., Ph.D., associate professor of dermatology at the Johns Hopkins University School of Medicine. "There are concerns that current antibiotics will not provide a durable solution to this public health threat."

Staph is a common bacterium and the most common cause of skin infections in people. Additionally, multidrug resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), are causing severe skin infections in healthy people outside of hospitals. And once you've had an infection, the recurrence rate is 50 percent within six months. Staph can also spread from the skin and cause invasive and life-threatening infections such as sepsis, osteomyelitis and pneumonia. "This is particularly concerning for people with diabetes and those with compromised immune systems," says Miller.

Using mice with defective immune systems, Miller's research team found that after an initial exposure of the skin to staph, they were surprisingly protected against a second skin exposure with the same bacteria. After testing for antibodies and other "usual suspects" of the immune system against this infection, it was not at all clear what immune response was protecting the mice. The researchers then tested a drug FDA-approved for treatment of multiple sclerosis, which acts by preventing certain immune cells from leaving lymph nodes for sites of inflammation.

"We couldn't have figured out what was happening without the expertise of our collaborators at U.C. Davis, who determined the genetic sequence of every single cell marker on the cells in the lymph nodes," says Miller.

That genetic sequencing data revealed that specific cells substantially multiplied after the initial infection, then moved to the infection site and provided protection against the second infection. These so-called gamma delta T cells account for less than 1 percent of all the cells in the lymph node prior to infection. After infection, they accounted for more than 20 percent.

"Our lab specializes in developing novel genetic methodologies to study T cell repertoires, but we had never applied this technology to study how the immune system responds to an infection," says Emanual Maverakis, M.D., associate professor of dermatology at the University of California, Davis School of Medicine. "We're thrilled to have played a role solving an important question that Dr. Miller had been working on for several years. This is just the first in a series of collaborative projects with the Miller lab that we have in store for the future."

Since this work was performed in mice, the team wanted to see if its findings were applicable to people. Working with collaborators from the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, the researchers tested blood from healthy individuals and people with a rare immune disorder that makes them highly susceptible to staph skin infections.

According to Miller, half of people with the disorder die by age 10, but if they survive to adulthood they somehow overcome their susceptibility to staph infections. In blood samples from these patients, the researchers found an increase in the percentage of gamma delta T cells, similar to what they observed in mice, which remained stable over years.

"This was a totally unexpected result," says Miller. "We are excited to learn more about these cells and how they confer this long-lasting protective immunity."

Miller hopes these new findings and especially gamma delta T cells may be targeted for developing new therapies or even a vaccine against staph skin infections. This, he says, could alleviate the burden of staph skin infections, prevent invasive complications and reduce health care costs.

Miller receives grant support from MedImmune, Regeneron, Moderna Therapeutics and Pfizer, which are developing therapeutics and vaccines against staph and other pathogens. This work was supported by grant numbers R01AR069502 and R21AI126896 to Miller and 1DP2OD008752 to Maverakis, by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, and an early career award from the Burroughs Wellcome Fund.

Carly A Dillen, Bret L Pinsker, Alina I Marusina, Alexander A Merleev, Orly N Farber, Haiyun Liu, Nathan K Archer, Da B Lee, Yu Wang, Roger V Ortines, Steven K Lee, Mark C Marchitto, Shuting S Cai, Alyssa G Ashbaugh, Larissa S May, Steven M Holland, Alexandra F Freeman, Loren G Miller, Michael R Yeaman, Scott I Simon, Joshua D Milner, Emanual Maverakis, Lloyd S Miller.
Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection.
J Clin Invest. 2018. doi: 10.1172/JCI96481.

Most Popular Now

In wine, there's health: Low levels of alcohol goo…

While a couple of glasses of wine can help clear the mind after a busy day, new research shows that it may actually help clean the mind as well. The new study, which appe...

Sanofi to acquire Ablynx for €3.9 Billion

Sanofi and Ablynx, a biopharmaceutical company engaged in the discovery and development of Nanobodies®, entered into a definitive agreement under which Sanofi will offer ...

Repurposed drug found to be effective against Zika…

In both cell cultures and mouse models, a drug used to treat Hepatitis C effectively protected and rescued neural cells infected by the Zika virus - and blocked transmiss...

Interim publications of randomized trials make new…

Early results from randomized trials are sometimes published before the trial is completed. The results of such interim publications may generate a great deal of interest...

Drug trial protocol redactions by industry sponsor…

New research published by the Journal of the Royal Society of Medicine exposes the extent of redactions in protocols for industry-sponsored randomised drug trials. Trial ...

Advanced Accelerator Applications receives FDA ap…

Novartis AG (NYSE: NVS) announced that Advanced Accelerator Applications, a subsidiary of Novartis Groupe S.A., has received US Food and Drug Administration (FDA) approva...

Blood vessel-on-a-chips show anti-cancer drug effe…

Researchers at the Institute of Industrial Science (IIS), the University of Tokyo, CNRS and INSERM, report a new organ-on-a-chip technology for the study of blood vessel ...

Guidelines extended to improve the use of feedback…

Researchers have recommended changes to international guidelines used in the development of clinical trials in an effort to gain information about the impact of the treat...

Brilinta significantly reduces CV events and coron…

AstraZeneca today announced results from a new sub-analysis of the Phase III PEGASUS-TIMI 54 trial, demonstrating a risk reduction of 19% in MACE (the composite of CV dea...

Roche reports good results in 2017

In 2017, Group sales rose 5% to CHF 53.3 billion. Core operating profit grew 3% and Core EPS increased 5%, reflecting the good underlying business performance. On an IFRS...

FDA approves new treatment for certain digestive t…

The U.S. Food and Drug Administration today approved Lutathera (lutetium Lu 177 dotatate) for the treatment of a type of cancer that affects the pancreas or gastrointesti...

How old antibiotic compounds could become tomorrow…

As the fight against drug-resistant infections continues, University of Leeds scientists are looking back at previously discarded chemical compounds, to see if any could ...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]