Garlic can fight chronic infections

An active sulphurous compound found in garlic can be used to fight robust bacteria in patients with chronic infections, a new study from the University of Copenhagen indicates. Here the researchers show that the garlic compound is able to destroy important components in the bacteria's communication systems, which involve regulatory RNA molecules.

'We really believe this method can lead to treatment of patients, who otherwise have poor prospects. Because chronic infections like cystic fibrosis can be very robust. But now we, together with a private company, have enough knowledge to further develop the garlic drug and test it on patients', says Assistant Professor Tim Holm Jakobsen from the Costerton Biofilm Center at the Department of Immunology and Microbiology.

The study is the latest addition from a research group headed by Professor Michael Givskov, which since 2005 has focussed on garlic's effect on bacteria. At the time they learned that garlic extract is able to inhibit bacteria, and in 2012 they showed that the sulphurous compound ajoene found in garlic is responsible for the effect. The new study, which has been published in the scientific journal Scientific Reports, takes an even closer look and documents ajoene's ability to inhibit small regulatory RNA molecules in two types of bacteria.

'The two types of bacteria we have studied are very important. They are called Staphylococcus aureus and Pseudomonas aeruginosa. They actually belong to two very different bacteria families and are normally fought using different methods. But the garlic compound is able to fight both at once and therefore may prove an effective drug when used together with antibiotics', says Tim Holm Jakobsen.

Previous studies have shown that garlic appears to offer the most powerful, naturally occurring resistance to bacteria. In addition to inhibiting the bacteria's RNA molecules, the active garlic compound also damages the protective slimy matrix surrounding the bacteria, the so-called biofilm. When the biofilm is destroyed or weakened, both antibiotics and the body's own immune system are able to attack the bacteria more directly and thus remove the infection.

In 2012 the researchers took out a patent on the use of ajoene to fight bacterial infections. Now the company Neem Biotech has bought the licence to use the patent. Their medical product, NX-AS-401, which aims to treat patients with cystic fibrosis, has now obtained a so-called 'orphan drug designation'. This means that clinical trials on patients will be conducted soon.

If the clinical trials show good results, the drug can be marketed as the first in a series of antimicrobial connections with brand new modes of action developed by Givskov's research team.

Tim H Jakobsen, Anders N Warming, Rebecca M Vejborg, Joana A Moscoso, Marc Stegger, Frederik Lorenzen, Morten Rybtke, Jens B Andersen, Rico Petersen, Paal Skytt Andersen, Thomas E Nielsen, Tim Tolker-Nielsen, Alain Filloux, Hanne Ingmer, Michael Givskov.
A broad range quorum sensing inhibitor working through sRNA inhibition.
Scientific Reports 7, 9857 (2017). doi: 10.1038/s41598-017-09886-8.

Most Popular Now

Sanofi to acquire Ablynx for €3.9 Billion

Sanofi and Ablynx, a biopharmaceutical company engaged in the discovery and development of Nanobodies®, entered into a definitive agreement under which Sanofi will offer ...

Repurposed drug found to be effective against Zika…

In both cell cultures and mouse models, a drug used to treat Hepatitis C effectively protected and rescued neural cells infected by the Zika virus - and blocked transmiss...

More stroke patients may receive crucial treatment…

More patients could be eligible for critical treatments to remove or dissolve blood clots that cause strokes, according to a new treatment guideline issued by the America...

In wine, there's health: Low levels of alcohol goo…

While a couple of glasses of wine can help clear the mind after a busy day, new research shows that it may actually help clean the mind as well. The new study, which appe...

Drug trial protocol redactions by industry sponsor…

New research published by the Journal of the Royal Society of Medicine exposes the extent of redactions in protocols for industry-sponsored randomised drug trials. Trial ...

Advanced Accelerator Applications receives FDA ap…

Novartis AG (NYSE: NVS) announced that Advanced Accelerator Applications, a subsidiary of Novartis Groupe S.A., has received US Food and Drug Administration (FDA) approva...

Interim publications of randomized trials make new…

Early results from randomized trials are sometimes published before the trial is completed. The results of such interim publications may generate a great deal of interest...

Blood vessel-on-a-chips show anti-cancer drug effe…

Researchers at the Institute of Industrial Science (IIS), the University of Tokyo, CNRS and INSERM, report a new organ-on-a-chip technology for the study of blood vessel ...

FDA approves new treatment for certain digestive t…

The U.S. Food and Drug Administration today approved Lutathera (lutetium Lu 177 dotatate) for the treatment of a type of cancer that affects the pancreas or gastrointesti...

Roche reports good results in 2017

In 2017, Group sales rose 5% to CHF 53.3 billion. Core operating profit grew 3% and Core EPS increased 5%, reflecting the good underlying business performance. On an IFRS...

Cells of 3 advanced cancers die with drug-like com…

Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggres...

Pfizer announces positive top-line results for pot…

Pfizer Inc. has announced that REFLECTIONS B3281006, a comparative safety and efficacy study of PF-05280586 versus MabThera® (rituximab-EU), met its primary endpoint. PF-...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]