Researchers exploit rhythm of DNA replication to kill cancer cells

New DNA is generated in human cells from tiny building blocks called nucleotides produced by an enzyme called RNR. Until now, we have not fully understood how exactly the RNR rhythm and the presence of right amount of nucleotides are aligned with the pace of DNA replication. Now, researchers from the Faculty of Health and Medical Sciences at the University of Copenhagen have mapped the flow and regulation of nucleotides. The flow follows the same rhythm as replication of DNA does - and when it does not, the cells regulate the process to align the two.

"We can see that these processes follow the same periodic rhythm. We found a mechanism that instantly slows down DNA-replication when RNR, the nucleotide factory, gets out of that rhythm, but well before the nucleotide supply becomes critically low, says Jiri Lukas Professor and Executive Director at The Novo Nordisk Foundation Center for Protein Research.

Building blocks catching up

The research groups led by Professors Jiri Lukas and Chunaram Choudhary found that the cell reacts to even small changes in the flow of nucleotides. If the production falters, a chemical signal consisting of reactive oxygen species (ROS) spreads the message to slow down the DNA replication.

Their research paper; published today in the journal Science, reports that such communication between nucleotide supply and DNA replication speed is possible thanks to the fact that all sites in human genome that actively copy DNA contain a protein called PRDX2 that senses this chemical alert.

When this happens, the PRDX2 protein releases an accelerator called TIMELESS from the DNA, and this release slows down the pace with which cell cope their DNA. Slower DNA replications allows for the production of nucleotides to catch up and get back to the same rhythm with DNA synthesis. Because of this, there are almost always enough nucleotides to build the DNA, which is turn is critically important for the copying the healthy genomes without mistakes.

High speed kills cancer

This finding sheds light on several illnesses, but is especially important in relation to cancer. The researchers show that they can deactivate the chemical signal that alerts the cells to problems with nucleotide production. Under such conditions, cells cannot slow down the replication process, and the researchers propose that this would impede proliferation of cancer cells because they are particularly vulnerable to a high replication speed.

"We found that cancer cells copy their DNA rather slow, because they have abnormal genomes and replicating DNA has to overcome many obstacles. When we remove their ability to copy their genomes slowly, the cancer cells die because they cannot cope with too many bumps on their DNA templates," says Kumar Somyajit, Post.Doc and first author of the study.

Kumar Somyajit, Rajat Gupta, Hana Sedlackova, Kai John Neelsen, Fena Ochs, Maj-Britt Rask, Chunaram Choudhary, Jiri Lukas.
Redox-sensitive alteration of replisome architecture safeguards genome integrity.
Science, Vol. 358, Issue 6364, pp. 797-802. doi: 10.1126/science.aao3172.

Most Popular Now

Novo Nordisk announces plans to transform its appr…

Novo Nordisk announced plans to restructure its Research & Development (R&D) organisation to accelerate the expansion and diversification of its pipeline across serious c...

The Merck Accelerator Program 2019

The Merck Accelerator is looking for real partners so that you can work together in shaping the future. With programs in the headquarters in Germany, in China and the Sat...

Imfinzi is the first immunotherapy to demonstrate …

AstraZeneca and MedImmune, its global biologics research and development arm, have presented data on overall survival (OS) in the Phase III PACIFIC trial of Imfinzi durin...

World's largest Alzheimer's survey reveals most ad…

Amgen (NASDAQ:AMGN), Novartis and Banner Alzheimer's Institute (BAI), in association with Alzheimer's Disease International (ADI), announced results from the largest glob...

Pre-clinical success for a universal flu vaccine o…

Researchers from the University of Oxford's Department of Zoology have demonstrated pre-clinical success for a universal flu vaccine in a new paper published in Nature Co...

Discovery could explain failed clinical trials for…

Researchers at King's College London have discovered a vicious feedback loop underlying brain degeneration in Alzheimer's disease which may explain why so many drug trial...

Global survey reveals that physicians need more in…

Results from a new global survey revealed that more than one-third (36%) of the 310 physicians surveyed do not think they have sufficient information required to make inf...

Aspirin found not to prolong healthy aging

Taking a low-dose aspirin daily does not prolong healthy living in older adults, according to findings from the ASPirin in Reducing Events in the Elderly (ASPREE) trial p...

In clinical trials, new antibody therapy controls …

Thanks to improvements in antiretroviral therapy, HIV is now a manageable condition. Yet even the best drugs do not entirely eliminate the virus, which latently lingers i...

The Nobel Prize in Physiology or Medicine 2018 was…

Cancer kills millions of people every year and is one of humanity's greatest health challenges. By stimulating the inherent ability of our immune system to attack tumor c...

FDA approves first treatment for advanced form of …

The U.S. Food and Drug Administration today approved Libtayo (cemiplimab-rwlc) injection for intravenous use for the treatment of patients with metastatic cutaneous squam...

Novartis licenses three novel anti-infective progr…

Novartis announced today that it has entered into a licensing and equity agreement with Boston Pharmaceuticals for the development of three novel anti-infective drug cand...