Alzheimer's disease might be a 'whole body' problem

Alzheimer's disease, the leading cause of dementia, has long been assumed to originate in the brain. But research from the University of British Columbia and Chinese scientists indicates that it could be triggered by breakdowns elsewhere in the body. The findings, published today in Molecular Psychiatry, offer hope that future drug therapies might be able to stop or slow the disease without acting directly on the brain, which is a complex, sensitive and often hard-to-reach target. Instead, such drugs could target the kidney or liver, ridding the blood of a toxic protein before it ever reaches the brain.

The scientists demonstrated this cancer-like mobility through a technique called parabiosis: surgically attaching two specimens together so they share the same blood supply for several months.

UBC Psychiatry Professor Dr. Weihong Song and Neurology Professor Yan-Jiang Wang at Third Military Medical University in Chongqing attached normal mice, which don't naturally develop Alzheimer's disease, to mice modified to carry a mutant human gene that produces high levels of a protein called amyloid-beta. In people with Alzheimer's disease, that protein ultimately forms clumps, or "plaques," that smother brain cells.

Normal mice that had been joined to genetically modified partners for a year "contracted" Alzheimer's disease. Song says the amyloid-beta traveled from the genetically-modified mice to the brains of their normal partners, where it accumulated and began to inflict damage.

Not only did the normal mice develop plaques, but also a pathology similar to "tangles" - twisted protein strands that form inside brain cells, disrupting their function and eventually killing them from the inside-out. Other signs of Alzheimer's-like damage included brain cell degeneration, inflammation and microbleeds. In addition, the ability to transmit electrical signals involved in learning and memory - a sign of a healthy brain - was impaired, even in mice that had been joined for just four months.

Besides the brain, amyloid-beta is produced in blood platelets, blood vessels and muscles, and its precursor protein is found in several other organs. But until these experiments, it was unclear if amyloid-beta from outside the brain could contribute to Alzheimer's disease. This study, Song says, shows it can.

"The blood-brain barrier weakens as we age," says Song, a Canada Research Chair in Alzheimer's Disease and the Jack Brown and Family Professor. "That might allow more amyloid beta to infiltrate the brain, supplementing what is produced by the brain itself and accelerating the deterioration."

Song, head of UBC's Townsend Family Laboratories, envisions a drug that would bind to amyloid-beta throughout the body, tagging it biochemically in such a way that the liver or kidneys could clear it.

"Alzheimer's disease is clearly a disease of the brain, but we need to pay attention to the whole body to understand where it comes from, and how to stop it," he says.

XL Bu, Y Xiang, WS Jin, J Wang, LL Shen, ZL Huang, K Zhang, YH Liu, F Zeng, JH Liu, HL Sun, ZQ Zhuang, SH Chen, XQ Yao, B Giunta, YC Shan, J Tan, XW Chen, ZF Dong, HD Zhou, XF Zhou, W Song, YJ Wang.
Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies.
Molecular Psychiatry. doi: 10.1038/mp.2017.204.

Most Popular Now

Imfinzi is the first immunotherapy to demonstrate …

AstraZeneca and MedImmune, its global biologics research and development arm, have presented data on overall survival (OS) in the Phase III PACIFIC trial of Imfinzi durin...

Sandoz Healthcare Access Challenge #SandozHACk ret…

Sandoz, the Novartis generics and biosimilars division, today announces the launch of the second Sandoz Healthcare Access Challenge (HACk). The #SandozHACk is a global co...

Global survey reveals that physicians need more in…

Results from a new global survey revealed that more than one-third (36%) of the 310 physicians surveyed do not think they have sufficient information required to make inf...

In clinical trials, new antibody therapy controls …

Thanks to improvements in antiretroviral therapy, HIV is now a manageable condition. Yet even the best drugs do not entirely eliminate the virus, which latently lingers i...

Novartis licenses three novel anti-infective progr…

Novartis announced today that it has entered into a licensing and equity agreement with Boston Pharmaceuticals for the development of three novel anti-infective drug cand...

The Nobel Prize in Physiology or Medicine 2018 was…

Cancer kills millions of people every year and is one of humanity's greatest health challenges. By stimulating the inherent ability of our immune system to attack tumor c...

Pfizer to award more than $3 million in grants to …

Pfizer Inc. today announced the recipients of the Advancing Science through Pfizer Investigator Research Exchange (ASPIRE) Breast Cancer Research Awards. Four grants tota...

FDA approves first treatment for advanced form of …

The U.S. Food and Drug Administration today approved Libtayo (cemiplimab-rwlc) injection for intravenous use for the treatment of patients with metastatic cutaneous squam...

DNA islands effective as 'anti-bacterial drones'

Genomic "islands" that evolved from viruses can be converted into "drones" that disable Staphylococcus aureus, bacteria that are often resistant to antibiotics and pose a...

FDA awards 12 grants to fund new clinical trials t…

The U.S. Food and Drug Administration today announced that it has awarded 12 new clinical trial research grants totaling more than $18 million over the next four years to...

Addressing social and cultural drivers of type 2 d…

New research shows healthcare services and public health strategies aimed at reducing the burden of type 2 diabetes may prove ineffective, unless they address social and ...

Evidence mounts linking aspirin to lower risk of o…

Taking a low-dose aspirin daily may help women lower their risk of developing ovarian cancer. A new study co-led by Moffitt Cancer Center found that women who reported ta...