Cells programmed like computers to fight disease

Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions - thanks to a breakthrough in synthetic biology by the University of Warwick. Led by Professor Alfonso Jaramillo in the School of Life Sciences, new research has discovered that a common molecule - ribonucleic acid (RNA), which is produced abundantly by humans, plants and animals - can be genetically engineered to allow scientists to program the actions of a cell.

As well as fighting disease and injury in humans, scientists could harness this technique to control plant cells and reverse environmental and agricultural issues, making plants more resilient to disease and pests.

RNAs carry information between protein and DNA in cells, and Professor Jaramillo has proved that these molecules can be produced and organised into tailor-made sequences of commands - similar to codes for computer software - which feed specific instructions into cells, programming them to do what we want.

Much like a classic Turing computer system, cells have the capacity to process and respond to instructions and codes inputted into their main system, argues Professor Jaramillo.

Similar to software running on a computer, or apps on a mobile device, many different RNA sequences could be created to empower cells with a ‘Virtual Machine’, able to interpret a universal RNA language, and to perform specific actions to address different diseases or problems.

This will allow a novel type of personalised and efficient healthcare, allowing us to ‘download’ a sequence of actions into cells, instructing them to execute complex decisions encoded in the RNA.

The researchers made their invention by first modelling all possible RNA sequence interactions on a computer, and then constructing the DNA encoding the optimal RNA designs, to be validated on bacteria cells in the laboratory.

After inducing the bacterial cells to produce the genetically engineered RNA sequences, the researchers observed that they had altered the gene expression of the cells according to the RNA program - demonstrating that cells can be programmed with pre-defined RNA commands, in the manner of a computer’s microprocessor.

Professor Alfonso Jaramillo, who is part of the Warwick Integrative Synthetic Biology Centre, commented: "The capabilities of RNA molecules to interact in a predictable manner, and with alternative conformations, has allowed us to engineer networks of molecular switches that could be made to process arbitrary orders encoded in RNA.

"Throughout the last year, my group has been developing methodologies to enable RNA sensing the environment, perform arithmetic computations and control gene expression without relying on proteins, which makes the system universal across all living kingdoms.

"The cells could read the RNA 'software' to perform the encoded tasks, which could make the cells detect abnormal states, infections, or trigger developmental programs."

Guillermo Rodrigo, Satya Prakash, Shensi Shen, Eszter Majer, José-Antonio Daròs, Alfonso Jaramillo.
Model-based design of RNA hybridization networks implemented in living cells.
Nucleic Acids Research, gkx698, doi: 10.1093/nar/gkx698.

Most Popular Now

Sanofi builds focus on rare blood disorders and ca…

Some of the most serious unmet patient needs today are in the field of hematology. Rare blood disorders and blood-related cancers continue to be a major focus of research...

Novartis rises to second place in 2018 Access to M…

Novartis ranked second in the 2018 Access to Medicine Index (ATMi), up from 3rd place in 2016, in recognition of its long-standing efforts to improve worldwide access to ...

FDA approves first treatment for Lambert-Eaton mya…

The U.S. Food and Drug Administration today approved Firdapse (amifampridine) tablets for the treatment of Lambert-Eaton myasthenic syndrome (LEMS) in adults. LEMS is a r...

Pfizer reaches a global agreement with AbbVie

Pfizer Inc. (NYSE:PFE) has signed licensing agreements with AbbVie, resolving all global intellectual property matters for Pfizer's proposed adalimumab biosimilar. Under ...

FDA grants breakthrough device designation to arti…

Bayer announced today that the U.S. Food and Drug Administration (FDA) granted Breakthrough Device Designation to the Artificial Intelligence Software for Chronic Thrombo...

FDA approves new treatment for patients with acute…

The U.S. Food and Drug Administration today approved Daurismo (glasdegib) tablets to be used in combination with low-dose cytarabine (LDAC), a type of chemotherapy, for t...

U.S. FDA approves Larotrectinib, the first TRK inh…

The U.S. Food and Drug Administration (FDA) has approved larotrectinib, the first oral TRK inhibitor, under the brand name Vitrakvi®. The approval is for the treatment of...

GSK reaches agreement to acquire TESARO, an oncolo…

GlaxoSmithKline plc (LSE/NYSE: GSK) and TESARO Inc (NASDAQ: TSRO) announced that the Companies have entered into a definitive agreement pursuant to which GSK will acquire...

Merck and Pfizer provide update on avelumab in pla…

Merck and Pfizer Inc. (NYSE: PFE) today announced that the Phase III JAVELIN Ovarian 200 trial evaluating avelumab* alone or in combination with pegylated liposomal doxor...

Bristol-Myers Squibb awards "Golden Tickets…

Bristol-Myers Squibb Company (NYSE: BMY) and LabCentral, an innovative, shared laboratory space designed as a launchpad for life-sciences and biotech startups, today anno...

Alcon to highlight its vision, strategy and benefi…

Alcon, the eye care division of Novartis, will today hold its first Capital Markets Day for investors and analysts in relation to the previously-announced intention of No...

New study reveals probiotics do not help children …

Probiotics are a multibillion-dollar industry with marketing claims of being an effective treatment for a multitude of ailments, including diarrhea. However, findings fro...