Cells programmed like computers to fight disease

Cells can be programmed like a computer to fight cancer, influenza, and other serious conditions - thanks to a breakthrough in synthetic biology by the University of Warwick. Led by Professor Alfonso Jaramillo in the School of Life Sciences, new research has discovered that a common molecule - ribonucleic acid (RNA), which is produced abundantly by humans, plants and animals - can be genetically engineered to allow scientists to program the actions of a cell.

As well as fighting disease and injury in humans, scientists could harness this technique to control plant cells and reverse environmental and agricultural issues, making plants more resilient to disease and pests.

RNAs carry information between protein and DNA in cells, and Professor Jaramillo has proved that these molecules can be produced and organised into tailor-made sequences of commands - similar to codes for computer software - which feed specific instructions into cells, programming them to do what we want.

Much like a classic Turing computer system, cells have the capacity to process and respond to instructions and codes inputted into their main system, argues Professor Jaramillo.

Similar to software running on a computer, or apps on a mobile device, many different RNA sequences could be created to empower cells with a ‘Virtual Machine’, able to interpret a universal RNA language, and to perform specific actions to address different diseases or problems.

This will allow a novel type of personalised and efficient healthcare, allowing us to ‘download’ a sequence of actions into cells, instructing them to execute complex decisions encoded in the RNA.

The researchers made their invention by first modelling all possible RNA sequence interactions on a computer, and then constructing the DNA encoding the optimal RNA designs, to be validated on bacteria cells in the laboratory.

After inducing the bacterial cells to produce the genetically engineered RNA sequences, the researchers observed that they had altered the gene expression of the cells according to the RNA program - demonstrating that cells can be programmed with pre-defined RNA commands, in the manner of a computer’s microprocessor.

Professor Alfonso Jaramillo, who is part of the Warwick Integrative Synthetic Biology Centre, commented: "The capabilities of RNA molecules to interact in a predictable manner, and with alternative conformations, has allowed us to engineer networks of molecular switches that could be made to process arbitrary orders encoded in RNA.

"Throughout the last year, my group has been developing methodologies to enable RNA sensing the environment, perform arithmetic computations and control gene expression without relying on proteins, which makes the system universal across all living kingdoms.

"The cells could read the RNA 'software' to perform the encoded tasks, which could make the cells detect abnormal states, infections, or trigger developmental programs."

Guillermo Rodrigo, Satya Prakash, Shensi Shen, Eszter Majer, José-Antonio Daròs, Alfonso Jaramillo.
Model-based design of RNA hybridization networks implemented in living cells.
Nucleic Acids Research, gkx698, doi: 10.1093/nar/gkx698.

Most Popular Now

Cannabis extract helps reset brain function in psy…

Research from King's College London has found that a single dose of the cannabis extract cannabidiol can help reduce brain function abnormalities seen in people with psyc...

New cancer treatment uses enzymes to boost immune …

Researchers at The University of Texas at Austin have developed a new approach to treating cancer using enzyme therapy. The enzyme, PEG-KYNase, does not directly kill can...

For first time in 40 years, cure for acute leukemi…

Acute myeloid leukemia is one of the most aggressive cancers. While other cancers have benefitted from new treatments, there has been no encouraging news for most leukemi...

Bayer accelerates six new startups

Changing the experience of health: that's the focus of the six startups which the Bayer G4A team has included in the Accelerator program this year. The young companies fr...

Novartis receives European Commission approval of …

Novartis today announced that the European Commission (EC) has approved Kymriah® (tisagenlecleucel, formerly CTL019). The approved indications are for the treatment of pe...

Shire completes sale of oncology franchise

Shire plc (LSE: SHP, NASDAQ: SHPG) announces today that it has completed the sale of its Oncology franchise to Servier S.A.S. for $2.4 billion. The franchise includes the...

Antioxidant reduces risk for second heart attack, …

Doctors have long known that in the months after a heart attack or stroke, patients are more likely to have another attack or stroke. Now, a paper in the Journal of the A...

Novartis to divest the Sandoz US dermatology busin…

Novartis today announced it has agreed to sell selected portions of its Sandoz US portfolio, specifically the Sandoz US dermatology business and generic US oral solids po...

New tablet production facility in Ingelheim: Cente…

Boehringer Ingelheim held a groundbreaking ceremony for the construction of a new production facility for innovative drugs. This new Solids Launch facility will focus on ...

Tezepelumab granted Breakthrough Therapy Designati…

AstraZeneca and its partner Amgen Inc. (Amgen) today announced that the US Food and Drug Administration (FDA) has granted Breakthrough Therapy Designation for tezepelumab...

Pfizer terminates domagrozumab (PF-06252616) clini…

Pfizer Inc. (NYSE: PFE) announced that it is terminating two ongoing clinical studies evaluating domagrozumab (PF-06252616) for the treatment of Duchenne muscular dystrop...

Pfizer and Astellas amend clinical research protoc…

Pfizer Inc. (NYSE:PFE) and Astellas Pharma Inc. (TSE:4503, President and CEO: Kenji Yasukawa, Ph.D., "Astellas") announced amendments to the protocols for two registratio...