Expanding the reach of therapeutic antibodies

A group of researchers has developed an approach to efficiently produce antibodies that can bind to two different target molecules simultaneously, a long-desired innovation in the field of cancer immunotherapy. Antibodies are proteins produced by the immune system that specialize in recognizing and binding to molecular targets unique to bacteria, viruses or other foreign cells. Because antibodies are stable and long-lasting in the human body and can precisely recognize specific targets, they have been exploited to develop new treatments for diseases. For example, modified antibodies can be used to bind to targets in cancer cells, recruiting the immune system to attack the cancer or preventing the cancer cells from multiplying. Because of their precision and capacity to stimulate the body's immune response, antibody-based therapies typically have fewer side effects than chemotherapy or radiation.

Antibodies are "Y" shaped, and typically bind a target, or antigen, through the tip of each arm of the "Y." In naturally produced antibodies, both arms of a single antibody typically are the same and bind to the same target. One approach to increasing the versatility of antibody therapies is to engineer what are called bispecific antibodies, in which each arm binds to a different molecule. This expands the range of what antibodies can be used for. For example, a bispecific antibody could target a cluster of proteins made up of multiple protein types, or it could bring two different molecules or cell types together.

One bispecific antibody-like drug - the leukemia drug blinatumomab - is currently on the market. But development of more therapies based on bispecific antibodies has been hampered by technical challenges. For example, certain bispecific antibodies deviate from the standard Y shape and tend to be less stable than conventional antibodies, falling apart easily. Further, certain bispecific antibody formats have tended to be difficult to produce at industrial scales because they can require specialized engineering processes.

In experiments published in JBC, a team overseen by John de Kruif, the chief technology officer of clinical-stage research company Merus N.V., engineered improved bispecific antibodies by making a few key changes to the structure of natural human immunoglobulin G (IgG) antibodies, and showed that they could be readily manufactured. IgG is a well-studied antibody and is the most abundant one produced in the human body.

"We have made, in a complete IgG molecule, only four changes to get from a normal monospecific antibody into bispecific antibody," de Kruif said. "The great thing is that it looks so much like a normal antibody that we can produce it well and we believe we know how it will behave."

The four mutations were in the "heavy chain" protein components of the antibodies. Typically, two identical heavy chains pair up in each antibody. The challenge in creating bispecific antibodies was to induce non-identical heavy chains to pair--creating "arms" capable of binding different antigens - while discouraging pairing of identical ones.

The team's idea was to introduce amino acids with opposite charges to the two different heavy chains, so that identical heavy chains would repel each other whereas the positively and negatively charged heavy chains would attract. To identify the right locations in which to introduce these charges, they used computational simulations using virtual screening software followed by validation in the lab.

"Using the virtual screening software provided a baseline," said Linda Kaldenberg-Hendriks of Merus, who led the testing of the antibodies. "We identified potential good candidates for design choices in the heavy chain sets, then generated the proteins and characterized them thoroughly. When we saw that they were behaving the way we wanted them to, it was really satisfying."

The team also investigated the molecular structure of the bispecific antibodies, and confirmed that the mutations resulted in only very subtle changes in the "backbone" of the heavy chains, which may explain stability of these bispecific antibodies.

"A strong point [of this study] was to combine different approaches, the computational tools with the biochemistry and structural biology," said Camilla De Nardis of Merus and Utrecht University, who was a co-lead author on the study.

The proteins that worked paired up to form bispecific antibodies, with very few to no monospecific antibodies in the mixture. The team next subjected them to a battery of tests, confirming that they were as stable as normal IgG antibodies and had similar pharmacokinetic properties.

Because production and purification of IgG antibodies is a well-established industrial process, the team could simply provide manufacturers with the protein sequences modified with the key changes that allowed the proteins to form bispecifics. "We believe we can make virtually any bispecific antibody we want," Kaldenberg-Hendriks said.

The team's bispecific antibodies targeting cancer cell growth factor complexes are now in clinical trials, with more still in the preclinical pipeline. The team is enthusiastic about the potential for the versatile format to be adapted to different types of therapies.

"Antibodies are capable of being so specific, and you can tweak and tune them," Kaldenberg-Hendriks said. "With bispecific antibodies, we believe we can choose the affinities of both arms and balance them so that you can more specifically target tumors, and also recruit other cells or molecules to attack the tumor cells without many side effects. We really think it's the way forward."

De Nardis C, Hendriks LJA, Poirier E, Arvinte T, Gros P, Bakker ABH, de Kruif J.
A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1.
J Biol Chem. 2017 Sep 1;292(35):14706-14717. doi: 10.1074/jbc.M117.793497.

Most Popular Now

Most popular vitamin and mineral supplements provi…

The most commonly consumed vitamin and mineral supplements provide no consistent health benefit or harm, suggests a new study led by researchers at St. Michael's Hospital...

Tiny particles could help fight brain cancer

Glioblastoma multiforme, a type of brain tumor, is one of the most difficult-to-treat cancers. Only a handful of drugs are approved to treat glioblastoma, and the median ...

New approach to immunotherapy leads to complete re…

A novel approach to immunotherapy developed by researchers at the National Cancer Institute (NCI) has led to the complete regression of breast cancer in a patient who was...

Amgen Foundation and Harvard team up to offer free…

The Amgen Foundation and Harvard University today announced plans to launch a free online science education platform uniquely designed to level the playing field for aspi...

The Pfizer Foundation announces $5 million in gran…

The Pfizer Foundation announced a new $5 million grant commitment to initiatives in low- and middle-income countries that provide family planning access and education for...

What would help or hinder patient participation in…

As clinical trials gear up with the aim of attaining the first FDA-approved treatments for mitochondrial disease, a new study reports for the first time what patients and...

New drugs could also be deployed against lung and …

A new anti-cancer drug may be effective against a wider range of cancers than previously thought. Using a mouse model and samples taken from cancer patients, a team from ...

Update on Phase III clinical trials of lanabecesta…

AstraZeneca and Eli Lilly and Company (Lilly) are discontinuing the global Phase III clinical trials of lanabecestat, an oral beta secretase cleaving enzyme (BACE) inhibi...

Pfizer to expand venture investing with $600 milli…

Pfizer Inc. (NYSE:PFE) today announced it plans to invest $600 million in biotechnology and other emerging growth companies through Pfizer Ventures, the company’s venture...

Soy lecithin NSAID combo drug protects against can…

When scientists at The University of Texas Health Science Center at Houston (UTHealth) applied a chemical found in soybeans to a non-steroidal anti-inflammatory drug (NSA...

Novartis receives positive CHMP opinion for Aimovi…

Novartis announced the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA) has recommended approval for Aimovig® (erenumab) for t...

FDA takes action against 53 websites marketing una…

The U.S. Food and Drug Administration today announced that it has warned nine online networks, operating a total of 53 websites, that they must stop illegally marketing p...