Gene variant activity is surprisingly variable between tissues

Every gene in (almost) every cell of the body is present in two variants - so called alleles: one is deriving from the mother, the other one from the father. In most cases both alleles are active and transcribed by the cells into an RNA message. However, for a few genes, only one allele is expressed, while the other one is silenced. The decision whether the maternal or the paternal version is shut down occurs early in embryonic development - one reason, why for long it was thought that the pattern of active alleles is nearly homogeneous in the various tissues of the organism.

The new study, where CeMM PhD Student Daniel Andergassen is first author (now a PostDoc at Harvard University), uncovers a different picture. By performing the first comprehensive analysis of all active alleles in 23 different tissues and developmental stages of mice, the team of scientists revealed that each tissue showed a specific distribution of active alleles.

For their experiments, the researchers created hybrids of two genetically distinct mouse strains with a fully sequenced genome, allowing gene variants to be clearly assigned to the maternal or paternal allele. To facilitate the analysis, the team developed a user-friendly program called Allelome.PRO, that can easily be applied to similar datasets in mice and other species, a valuable tool for the community to investigate regulation of allele activity. By using this tool to analyze their data the scientists were able to catalogue active alleles in a comprehensive set of mouse tissues, or the mouse “Allelome”, and gain an insight into how this differential gene activity is regulated.

The scientists found that both genetic and epigenetic differences between the maternal and paternal allele contributed to the observed tissue-specific activity patterns. "Our results indicate that a large part of those patterns are induced by so-called 'enhancers'", co-senior author Quanah Hudson, now at IMBA (Institute for molecular Biotechnology of the Austrian Academy of Sciences) explains. "Enhancers are DNA regions that are often located at quite some distance from the observed allele, but nevertheless have a direct influence on their activity."

"This study reveals for the first time a comprehensive picture of all active alleles in different tissues - we have uncovered the first complete allelome" Florian Pauler, now at ISTA (Institute of Science and Technology Austria) and co-senior author, adds. "This is not only valuable to understand basic biological functions, but will also help investigating diseases that involve defective gene regulators."

Some of the genes that contributed to the tissue-specific activity patterns were located on the X chromosome and escaped so-called "X-chromosome inactivation", where one of the two X chromosomes in females gets shut down. Previously it was reported that around 3% of X-chromosomal genes in mice and 15% in humans escape inactivation. However, this study revealed that mice are more similar to humans than previously thought, with an average of around 10% of active genes escaping X-inactivation per tissue. By examining a broad range of organs the researchers showed that the number of escapers varies dramatically between tissues. Most strikingly, muscle showed a surprisingly high rate of escapers, with over 50% of active genes escaping X chromosome activation, a result that may be relevant to some diseases of the muscle.

Finally, the allelome offers a near complete picture of "genomic imprinting", the process that leads to epigenetic silencing of either the maternal or paternal allele that is initiated by an epigenetic mark placed in either the egg or sperm. Previously, it was reported that approximately 100 genes can be subject to imprinted silencing - but in many cases, the tissue specificity was not known. This study led to the discovery of 18 new imprinted genes, validated some known genes and resolved the disputed status of some others to provide a gold standard list of 93 imprinted genes in mouse. The scientists found that those new genes were located near to other imprinted genes, indicating that they were co-regulated. Interestingly, this study demonstrated that Igfr2, the first imprinted gene discovered by Denise Barlow in 1991, is surrounding by a large cluster of imprinted genes that extend over 10% of the chromosome, making it the largest co-regulated domain in the genome outside of the X chromosome. Fittingly, after her lab found the first imprinted gene, and discovered the first imprinted non-coding RNA shown to control imprinted silencing. Giulio Superti-Furga congratulates Denise Barlow who recently went into retirement to her great scientific achievements and for revealing the full picture of imprinted genes in the mouse.

Andergassen D, Dotter CP, Wenzel D, Sigl V, Bammer PC, Muckenhuber M, Mayer D, Kulinski TM, Theussl HC, Penninger JM, Bock C, Barlow DP, Pauler FM, Hudson QJ.
Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression.
Elife. 2017 Aug 14;6. pii: e25125. doi: 10.7554/eLife.25125.

Most Popular Now

In wine, there's health: Low levels of alcohol goo…

While a couple of glasses of wine can help clear the mind after a busy day, new research shows that it may actually help clean the mind as well. The new study, which appe...

Sanofi to acquire Ablynx for €3.9 Billion

Sanofi and Ablynx, a biopharmaceutical company engaged in the discovery and development of Nanobodies®, entered into a definitive agreement under which Sanofi will offer ...

Interim publications of randomized trials make new…

Early results from randomized trials are sometimes published before the trial is completed. The results of such interim publications may generate a great deal of interest...

Drug trial protocol redactions by industry sponsor…

New research published by the Journal of the Royal Society of Medicine exposes the extent of redactions in protocols for industry-sponsored randomised drug trials. Trial ...

Advanced Accelerator Applications receives FDA ap…

Novartis AG (NYSE: NVS) announced that Advanced Accelerator Applications, a subsidiary of Novartis Groupe S.A., has received US Food and Drug Administration (FDA) approva...

Blood vessel-on-a-chips show anti-cancer drug effe…

Researchers at the Institute of Industrial Science (IIS), the University of Tokyo, CNRS and INSERM, report a new organ-on-a-chip technology for the study of blood vessel ...

Brilinta significantly reduces CV events and coron…

AstraZeneca today announced results from a new sub-analysis of the Phase III PEGASUS-TIMI 54 trial, demonstrating a risk reduction of 19% in MACE (the composite of CV dea...

Guidelines extended to improve the use of feedback…

Researchers have recommended changes to international guidelines used in the development of clinical trials in an effort to gain information about the impact of the treat...

Roche reports good results in 2017

In 2017, Group sales rose 5% to CHF 53.3 billion. Core operating profit grew 3% and Core EPS increased 5%, reflecting the good underlying business performance. On an IFRS...

How old antibiotic compounds could become tomorrow…

As the fight against drug-resistant infections continues, University of Leeds scientists are looking back at previously discarded chemical compounds, to see if any could ...

FDA approves new treatment for certain digestive t…

The U.S. Food and Drug Administration today approved Lutathera (lutetium Lu 177 dotatate) for the treatment of a type of cancer that affects the pancreas or gastrointesti...

Roche purchases shares in tender offer for Ignyta…

Roche (SIX: RO, ROG; OTCQX: RHHBY) and Ignyta, Inc. today announced that Roche's wholly owned subsidiary Abingdon Acquisition Corp., has accepted for payment all shares v...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]