Shortcut method in drug development

The majority of promising new drug candidates are effective only within the body's cells, but quick general methods of determining intracellular drug quantities are lacking. A team of researchers, headed by the Drug Delivery Group at Uppsala University, may now be on the track of a solution through a new, small-scale and fast method of determining a drug's bioavailability (the fraction available to work in biological processes) inside cultured cells. By measuring the unbound quantity of the drug in the cells, the method takes into account how the drug partly "disappears" when it binds to various cell components where it cannot exert its intended effect. This "disappearing" proportion of the drug varies from one molecule to another and has hitherto been hard to predict, but can now be easily determined with the researchers' small-scale method.

In the latest issue of the journal Proceedings of the National Academy of Sciences (PNAS), a research group at Uppsala University presents a new, small-scale method that may become a smart shortcut for determining the "bioavailability" of a pharmaceutical drug within cells.

"Finding out how a therapeutic drug affects the body means having to consider many different factors that can influence the cells' internal environment. Our method may be a way of substantially facilitating this stage."

The speaker, Uppsala University's Professor Per Artursson, bears primary responsibility for the joint study under way with colleagues at the Chemical Biology platform in SciLifeLab (created jointly by Uppsala and Stockholm Universities, Karolinska Institute and KTH Royal Institute of Technology) and GlaxoSmithKline in Stevenage, UK.

The research group has also demonstrated that, measured with the new method, bioavailability can be used to predict the effects of the drug molecules in various more advanced cell models for specific therapeutic areas, such as cancer, inflammation and dementia disorders.

"It takes time to develop models for specific therapeutic areas, so our method may be especially useful in early stages of drug development. Major pharmaceutical drug companies have already shown great interest and the method is now being offered on the SciLifeLab Drug Discovery and Development platform," Artursson says.

The scientists are currently investigating whether the method can predict effects of drugs in the body as well. This is more complicated than a cell culture. Since taking blood samples is simple while sampling tissue is considerably more difficult, bioavailability is often predicted on the basis of drug concentrations in the blood - a fairly blunt instrument.

The proportion of a drug entering the target cell may be either higher or lower than in the blood. The drug may, for example, bind to the cell's fat molecules, break down or be transported out of the cell. These mechanisms reduce the available fraction of the drug inside the cell, i.e. its intracellular bioavailability. Retrospective correction factors must therefore often be introduced to allow for these mechanisms in the use of "pharmacokinetic models" to study a drug's route of administration into the body.

"Our preliminary studies show that replacing the correction factors with a simple determination of local bioavailability in the cells seems to be possible. But more experiments are required before we know how applicable our principle is at tissue and organism level. Clearly, intracellular bioavailability is on the way to becoming an important early instrument in pharmaceutical drug research," Artursson says.

André Mateus, Laurie J. Gordon, Gareth J. Wayne, Helena Almqvist, Hanna Axelsson, Brinton Seashore-Ludlow, Andrea Treyer, Pär Matsson, Thomas Lundbäck, Andy West, Michael M. Hann, and Per Artursson.
Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery.
PNAS 2017 ; published ahead of print July 12, 2017, doi: 10.1073/pnas.1701848114.

Most Popular Now

Novartis confirms 5 year data for first and only f…

Novartis, a global leader in Immunology & Dermatology, confirmed today positive 5 year efficacy and safety results for Cosentyx® from a Phase III long-term extension stud...

Researchers develop microneedle patch for flu vacc…

A National Institutes of Health-funded study led by a team at the Georgia Institute of Technology and Emory University has shown that an influenza vaccine can produce rob...

Jardiance® (empagliflozin) analysis reinforces est…

An analysis of pooled safety data from 15 studies plus 4 extension studies involving more than 12,500 adults with type 2 diabetes demonstrated treatment with Jardiance® (...

Alzheimer's and Parkinson's spurred by same enzyme

Alzheimer's disease and Parkinson's disease are not the same. They affect different regions of the brain and have distinct genetic and environmental risk factors. But at ...

Researchers publish new findings on influence of h…

Poor diet is associated with 80% of colorectal cancer cases, but the exact pathways by which diet leads to cancer are not known. In a newly published study, Cleveland Cli...

Merck awards €1.25 million to research projects th…

Merck, a leading science and technology company, today announced its commitment to award €1.25 million to research projects in the field of fertility, supporting the adva...

FDA tackles drug competition to improve patient ac…

Today, the U.S. Food and Drug Administration is taking two new, important steps to increase competition in the market for prescription drugs and facilitate entry of lower...

Trials show unique stem cells a potential asthma t…

A study led by scientists at Monash University has shown that a new therapy developed through stem cell technology holds promise as a treatment for chronic asthma. The Mo...

Roche acquires mySugr to form a leading open platf…

Roche (SIX: RO, ROG; OTCQX: RHHBY) and mySugr have signed an agreement under which Roche acquired all shares of mySugr GmbH. Counting more than one million users globally...

Older Americans don't get - or seek - enough help …

The majority of Americans over age 50 take two or more prescription medicines to prevent or treat health problems, and many of them say the cost weighs on their budget, a...

Novartis CAR-T cell therapy CTL019 unanimously (10…

Novartis announced today that the US Food and Drug Administration (FDA) Oncologic Drugs Advisory Committee (ODAC) unanimously (10-0) recommended approval of CTL019 (tisag...

New brain cancer drug targets revealed

Researchers from Case Western Reserve University School of Medicine and The Cleveland Clinic designed a way to screen brain tumor cells and identify potential drug target...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]