Bacteria used as factories to produce cancer drugs

Researchers at the Novo Nordisk Foundation Center for Biosustainability in Denmark have developed a method of producing P450 enzymes - used by plants to defend against predators and microbes - in bacterial cell factories. The process could facilitate the production of large quantities of the enzymes, which are also involved in the biosynthesis of active ingredients of cancer drugs.

P450 is the name of a type of cytochrome, a specialised enzyme. These are used by plants to synthesise chemical compounds with many different functions, but their main use is in defending against herbivores, insects and microbes.

"These powerful compounds can be used as active ingredients in drugs for treating diseases such as cancer and psoriasis," SINC was told by the Spanish researcher Darío Vázquez-Albacete, the lead author of a paper describing a new method of producing the enzymes in bacterial cell factories.

The findings of the study, developed at the Novo Nordisk Foundation Center for Biosustainability, a research facility managed by the Technical University of Denmark, were published in the journal Biotechnology and Bioengineering.

According to Vázquez-Albacete, "the new technique is a significant step forward, as plants produce P450 enzymes in very small amounts, extraction is very complex and sometimes we have to use polluting chemical synthesis processes which involve the use of oil derivatives. Additionally, some plant species such as the yew (Taxus baccata), from which the cancer drug Taxol is obtained, are endangered species."

Large-scale production
"We have developed tools which will allow the proteins from plants that produce these compounds to be recognized by the bacterial molecular machinery. The aim is to use bacteria because they arecapable of growing rapidly in controlled fermenters, allowing us to produce large quantities of the enzymes," says the researcher.

To achieve these results, the researchers modified and transferred P450 genes from plants to E. Coli bacteria and to check whether the microbes could produce larger quantities of these enzymes than existing methods.

Vázquez-Albacete says that "in order for the bacteria to properly express the enzymes, the corresponding DNA sequence must frequently be modified to facilitate 'decoding' by the bacteria's system."

In the study, the team developed a toolbox of 'auxiliary' DNA sequences, allowing them to express around 50 P450 enzymes from different plants in E. coli.

Some of these enzymes are involved in synthesising the natural compound ingenol, which is used to treat psoriasis and is currently manufactured using traditional chemical techniques. Other P450s are used to produce the cancer drug Taxol.

The researcher stresses that plants generate a variety of interesting compounds to protect them from the sun and from predators, dehydration, etc. "Many of these are synthesised by P450s, whose function is still very little understood, so there is enormous potential to discover new compounds."

Besides the Novo Nordisk Foundation team, a handful of other groups are already following this line of research. Pharmaceutical firms have already displayed interest in the new technique.

Vazquez-Albacete D, Cavaleiro AM, Christensen U, Seppälä S, Møller BL, Nørholm MH.
An expression tag toolbox for microbial production of membrane bound plant cytochromes P450.
Biotechnol Bioeng. 2017 Apr;114(4):751-760. doi: 10.1002/bit.26203.

Most Popular Now

Making biological drugs with spider silk protein

Researchers at Karolinska Institutet in Sweden have managed to synthesise lung surfactant, a drug used in the care of preterm babies, by mimicking the production of spide...

Boehringer Ingelheim builds Digital Lab "BI X…

With the founding of BI X as independent subsidiary Boehringer Ingelheim will focus on breakthrough innovative digital solutions in healthcare from idea to pilot. The sta...

Bacteria used as factories to produce cancer drugs

Researchers at the Novo Nordisk Foundation Center for Biosustainability in Denmark have developed a method of producing P450 enzymes - used by plants to defend against pr...

Bristol-Myers Squibb announces new collaboration t…

Bristol-Myers Squibb Company (NYSE:BMY) announced today it has entered into a clinical research collaboration with Novartis to investigate the safety, tolerability and ef...

Clinical trial shows experimental drug's ability t…

By adding an experimental drug to a standard chemotherapy regimen, a subset of patients with metastatic pancreatic cancer had a significantly longer period before the can...

Take a coffee or tea break to protect your liver

Chronic liver diseases rank as the 12th cause of death worldwide and many of these disorders are associated with unhealthy lifestyles. Conversely, a healthier lifestyle c...

Internet withdrawal increases heart rate and blood…

Scientists and clinicians from Swansea and Milan have found that some people who use the internet a lot experience significant physiological changes such as increased hea...

Novartis presents data demonstrating efficacy of A…

Novartis today announced that it will present 19 scientific abstracts at the 59th Annual Scientific Meeting of the American Headache Society (June 8-11, 2017, Boston, USA...

AstraZeneca enters agreement with Grünenthal to di…

AstraZeneca has entered an agreement with Grünenthal for the global rights to Zomig (zolmitriptan) outside Japan. Zomig is indicated for the acute treatment of migraines ...

Pfizer and Lilly receive FDA Fast Track designatio…

Pfizer Inc. (NYSE:PFE) and Eli Lilly and Company (NYSE:LLY) today announced that the U.S. Food and Drug Administration (FDA) has granted Fast Track designation for tanezu...

Anyone can become more curious. Is that true?

Merck, a leading science and technology company, today announced the start of an experiment entitled "Anyone can become more curious". Driven by the company’s curiosity i...

Isolated Greek villages reveal genetic secrets tha…

A genetic variant that protects the heart against cardiovascular disease has been discovered by researchers at the Wellcome Trust Sanger Institute and their collaborators...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]