Tumor-targeting system uses cancer's own mechanisms to betray its location

By hijacking a cancer cell's own metabolism, researchers have found a way to tag and target elusive cancers with small-molecule sugars. This opens treatment pathways for cancers that are not responsive to conventional targeted antibodies, such as triple-negative breast cancer.

Led by Jianjun Cheng, a Hans Thurnauer Professor of Materials Science and Engineering at the University of Illinois, researchers at Illinois and collaborators in China published their findings in the journal Nature Chemical Biology.

Targeted cancer therapies rely on specific markers on the surface of cancer cells. Scientists can design antibodies that seek out those markers and deliver therapeutic or imaging agents. However, some cancers are not eligible for this kind of treatment because they lack surface markers to target.

"For example, we would like to target triple-negative breast cancer. This is a deadly breast cancer, with low survival rates," Cheng said. "We don't have any targeted therapeutics so far, because it doesn't have any of the receptors on it that we normally target. Our question was, can we create an artificial receptor?"

The researchers found a way to mark the cells using a class of small-molecule sugars called azides. Once metabolized in the cell, they are expressed on the surface, and can be targeted by a molecule called DBCO.

"It's very much like a key in a lock. They are very specific to each other. DBCO and azide react with each other with high specificity. We call it click chemistry," Cheng said. "The key question is, how do you put azide just on the tumor?"

To make sure the azide would only be expressed on the surface of cancer cells, the researchers added a protective group to the azide sugar that could only be removed by tumor-specific enzymes. In normal tissues, the azide sugar simply travels through. In tumor cells, it is completely metabolized and expressed on the cell surface, creating specific targets for DBCO to deliver a cargo of cancer-treating drugs or imaging agents.

The researchers tested the azide-based targeting system in mice with tumors from colon cancer, triple-negative breast cancer and metastatic breast cancer.

"We found the tumors had very strong signals compared with other tissues," Cheng said. "For the first time, we labeled and targeted tumors with small molecule sugars in vivo, and we used the cancer cell's own internal mechanisms to do it."

Wang H, Wang R, Cai K, He H, Liu Y, Yen J, Wang Z, Xu M, Sun Y, Zhou X, Yin Q, Tang L, Dobrucki IT, Dobrucki LW, Chaney EJ, Boppart SA, Fan TM, Lezmi S, Chen X, Yin L, Cheng J.
Selective in vivo metabolic cell-labeling-mediated cancer targeting.
Nat Chem Biol. 2017 Feb 13. doi: 10.1038/nchembio.2297.

Most Popular Now

FDA approves first biosimilar for the treatment of…

The U.S. Food and Drug Administration today approved Mvasi (bevacizumab-awwb) as a biosimilar to Avastin (bevacizumab) for the treatment of multiple types of cancer. Mvas...

Merck set to join forces with Project Data Sphere …

Merck, a leading science and technology company has announced that it will enter into a strategic collaboration with Project Data Sphere LLC, an independent, not-for-prof...

FDA approval brings first gene therapy to the Unit…

The U.S. Food and Drug Administration issued a historic action today making the first gene therapy available in the United States, ushering in a new approach to the treat...

Novartis appoints Bertrand Bodson as Chief Digital…

Novartis announced today that Bertrand Bodson, Chief Digital and Marketing Officer for Sainsbury's Argos, has been appointed to the new role of Chief Digital Officer, rep...

Boehringer Ingelheim Pharmaceuticals, Inc. receive…

Boehringer Ingelheim Pharmaceuticals, Inc. has announced that the U.S. Food and Drug Administration (FDA) approved CyltezoTM, a biosimilar to Humira®*, in a pre-filled sy...

Asthma medicine halves risk of Parkinson's

Parkinson's disease is a chronic disease with unknown causes. The disease destroys the brain cells that control body movements. Shivering, stiff arms and legs and poor co...

This is how belly fat could increase your cancer r…

It's been well established that obesity is a contributor to cancer risk, but how it actually causes cancer is still a question that hasn't been fully explained. A new Mic...

Amgen and Humana partner for improved health outco…

Two of the nation's leading health organizations, health and well-being company Humana Inc. (NYSE: HUM) and biotechnology company Amgen (NASDAQ:AMGN), have teamed up to i...

Tezepelumab significantly reduced asthma exacerbat…

AstraZeneca and Amgen Inc. (Amgen) announce results from the PATHWAY Phase IIb trial of tezepelumab that showed a significant reduction in the annual asthma exacerbation ...

Sanofi and Regeneron announce that cemiplimab (REG…

Sanofi and Regeneron Pharmaceuticals, Inc. today announced that the U.S. Food and Drug Administration (FDA) has granted Breakthrough Therapy designation status to cemipli...

Boehringer Ingelheim initiates Phase IIa study of …

Boehringer Ingelheim and pharmaceutical company Pharmaxis (ASX: PXS) announce that Boehringer Ingelheim has initiated a European and North American Phase IIa trial in NAS...

Extended treatment with Brilinta reduces risk of c…

AstraZeneca today announced results from a new sub-analysis of data from the Phase III PEGASUS-TIMI 54 trial demonstrating a 29% risk reduction in CV death (p=0.0041) fro...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]