Tumor-targeting system uses cancer's own mechanisms to betray its location

By hijacking a cancer cell's own metabolism, researchers have found a way to tag and target elusive cancers with small-molecule sugars. This opens treatment pathways for cancers that are not responsive to conventional targeted antibodies, such as triple-negative breast cancer.

Led by Jianjun Cheng, a Hans Thurnauer Professor of Materials Science and Engineering at the University of Illinois, researchers at Illinois and collaborators in China published their findings in the journal Nature Chemical Biology.

Targeted cancer therapies rely on specific markers on the surface of cancer cells. Scientists can design antibodies that seek out those markers and deliver therapeutic or imaging agents. However, some cancers are not eligible for this kind of treatment because they lack surface markers to target.

"For example, we would like to target triple-negative breast cancer. This is a deadly breast cancer, with low survival rates," Cheng said. "We don't have any targeted therapeutics so far, because it doesn't have any of the receptors on it that we normally target. Our question was, can we create an artificial receptor?"

The researchers found a way to mark the cells using a class of small-molecule sugars called azides. Once metabolized in the cell, they are expressed on the surface, and can be targeted by a molecule called DBCO.

"It's very much like a key in a lock. They are very specific to each other. DBCO and azide react with each other with high specificity. We call it click chemistry," Cheng said. "The key question is, how do you put azide just on the tumor?"

To make sure the azide would only be expressed on the surface of cancer cells, the researchers added a protective group to the azide sugar that could only be removed by tumor-specific enzymes. In normal tissues, the azide sugar simply travels through. In tumor cells, it is completely metabolized and expressed on the cell surface, creating specific targets for DBCO to deliver a cargo of cancer-treating drugs or imaging agents.

The researchers tested the azide-based targeting system in mice with tumors from colon cancer, triple-negative breast cancer and metastatic breast cancer.

"We found the tumors had very strong signals compared with other tissues," Cheng said. "For the first time, we labeled and targeted tumors with small molecule sugars in vivo, and we used the cancer cell's own internal mechanisms to do it."

Wang H, Wang R, Cai K, He H, Liu Y, Yen J, Wang Z, Xu M, Sun Y, Zhou X, Yin Q, Tang L, Dobrucki IT, Dobrucki LW, Chaney EJ, Boppart SA, Fan TM, Lezmi S, Chen X, Yin L, Cheng J.
Selective in vivo metabolic cell-labeling-mediated cancer targeting.
Nat Chem Biol. 2017 Feb 13. doi: 10.1038/nchembio.2297.

Most Popular Now

Amgen announces Repatha® (evolocumab) significantl…

Amgen (NASDAQ:AMGN) has announced that the FOURIER trial evaluating whether Repatha® (evolocumab) reduces the risk of cardiovascular events in patients with clinically ev...

Read more

Vitamin D discovery could prove key to new treatme…

A team led by Motonari Uesugi, professor and deputy director of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), found that a vitamin D metabol...

Read more

Merck announces research collaboration with Domain…

Merck, a leading science and technology company, today announced it has entered into a collaboration and licensing agreement with Domain Therapeutics, Strasbourg, France...

Read more

AstraZeneca expands 1st-line lung cancer Immuno-On…

AstraZeneca has provided an update on its Immuno-Oncology (IO) late-stage clinical development programme in 1st-line non-small cell lung cancer (NSCLC), including a refin...

Read more

Nuts can inhibit the growth of cancer cells

Roasted and salted, ground as a baking ingredient or fresh from the shell - for all those who enjoy eating nuts, there is good news from nutritionists at Friedrich Schill...

Read more

The drugs don't work, say back pain researchers

Commonly used non-steroidal anti-inflammatory drugs, such as ibuprofen, used to treat back pain provide little benefit, but cause side effects, according to new research ...

Read more

Novo Nordisk enters collaboration with University …

University of Oxford and Novo Nordisk today announced a landmark research collaboration focused on type 2 diabetes. The partnership will enable scientists from Novo Nordi...

Read more

An alternative theory on how aspirin may thwart ca…

Studies abound that point to a role for plain old aspirin in keeping deadly cancers at bay. While aspirin is not yet part of mainstream treatment for any cancer, it is re...

Read more

Pfizer reports fourth-quarter and full-year 2016 r…

Pfizer Inc. (NYSE: PFE) reported financial results for fourth-quarter and full-year 2016 and provided 2017 financial guidance. Pfizer manages its commercial operations th...

Read more

Relationship expert teams up with Pfizer to addres…

Nationally-recognized relationship expert and author, Logan Levkoff, Ph.D., has partnered with Pfizer Inc. (NYSE:PFE) to fill a void in information available to people li...

Read more

Anti-inflammatory diet could reduce risk of bone l…

Anti-inflammatory diets - which tend to be high in vegetables, fruits, fish and whole grains - could boost bone health and prevent fractures in some women, a new study su...

Read more

Drug shows promise for treating alcoholism

UCLA researchers have found that an anti-inflammatory drug primarily used in Japan to treat asthma could help people overcome alcoholism. Their study is the first to eval...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]