Tumor-targeting system uses cancer's own mechanisms to betray its location

By hijacking a cancer cell's own metabolism, researchers have found a way to tag and target elusive cancers with small-molecule sugars. This opens treatment pathways for cancers that are not responsive to conventional targeted antibodies, such as triple-negative breast cancer.

Led by Jianjun Cheng, a Hans Thurnauer Professor of Materials Science and Engineering at the University of Illinois, researchers at Illinois and collaborators in China published their findings in the journal Nature Chemical Biology.

Targeted cancer therapies rely on specific markers on the surface of cancer cells. Scientists can design antibodies that seek out those markers and deliver therapeutic or imaging agents. However, some cancers are not eligible for this kind of treatment because they lack surface markers to target.

"For example, we would like to target triple-negative breast cancer. This is a deadly breast cancer, with low survival rates," Cheng said. "We don't have any targeted therapeutics so far, because it doesn't have any of the receptors on it that we normally target. Our question was, can we create an artificial receptor?"

The researchers found a way to mark the cells using a class of small-molecule sugars called azides. Once metabolized in the cell, they are expressed on the surface, and can be targeted by a molecule called DBCO.

"It's very much like a key in a lock. They are very specific to each other. DBCO and azide react with each other with high specificity. We call it click chemistry," Cheng said. "The key question is, how do you put azide just on the tumor?"

To make sure the azide would only be expressed on the surface of cancer cells, the researchers added a protective group to the azide sugar that could only be removed by tumor-specific enzymes. In normal tissues, the azide sugar simply travels through. In tumor cells, it is completely metabolized and expressed on the cell surface, creating specific targets for DBCO to deliver a cargo of cancer-treating drugs or imaging agents.

The researchers tested the azide-based targeting system in mice with tumors from colon cancer, triple-negative breast cancer and metastatic breast cancer.

"We found the tumors had very strong signals compared with other tissues," Cheng said. "For the first time, we labeled and targeted tumors with small molecule sugars in vivo, and we used the cancer cell's own internal mechanisms to do it."

Wang H, Wang R, Cai K, He H, Liu Y, Yen J, Wang Z, Xu M, Sun Y, Zhou X, Yin Q, Tang L, Dobrucki IT, Dobrucki LW, Chaney EJ, Boppart SA, Fan TM, Lezmi S, Chen X, Yin L, Cheng J.
Selective in vivo metabolic cell-labeling-mediated cancer targeting.
Nat Chem Biol. 2017 Feb 13. doi: 10.1038/nchembio.2297.

Most Popular Now

Pfizer begins a Phase 1/2 study to evaluate respir…

Pfizer Inc. (NYSE:PFE) today announced that it has started a Phase 1/2 trial of its respiratory syncytial virus (RSV) vaccine candidate in healthy adult volunteers. RSV i...

Eczema drug effective against severe asthma

Two new studies of patients with difficult-to-control asthma show that the eczema drug dupilumab alleviates asthma symptoms and improves patients' ability to breathe bett...

Most popular vitamin and mineral supplements provi…

The most commonly consumed vitamin and mineral supplements provide no consistent health benefit or harm, suggests a new study led by researchers at St. Michael's Hospital...

AstraZeneca heads to 2018 ASCO Annual Meeting with…

AstraZeneca and MedImmune, its global biologics research and development arm, head to the 2018 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, US...

Tiny particles could help fight brain cancer

Glioblastoma multiforme, a type of brain tumor, is one of the most difficult-to-treat cancers. Only a handful of drugs are approved to treat glioblastoma, and the median ...

Novartis data at ASCO and EHA reinforce company's …

Novartis will present data from across its oncology portfolio at the upcoming 54th Annual Meeting of the American Society of Clinical Oncology (ASCO) to be held June 1-5 ...

Spiolto® Respimat® enables greater physical activi…

Boehringer Ingelheim announced data which add to the growing body of evidence that show Spiolto® (tiotropium/olodaterol) Respimat® enables greater physical activity in pa...

Amgen Foundation and Harvard team up to offer free…

The Amgen Foundation and Harvard University today announced plans to launch a free online science education platform uniquely designed to level the playing field for aspi...

New approach to immunotherapy leads to complete re…

A novel approach to immunotherapy developed by researchers at the National Cancer Institute (NCI) has led to the complete regression of breast cancer in a patient who was...

Study demonstrates new treatment for severe asthma

Researchers from McMaster University and the Firestone Institute for Respiratory Health at St. Joseph's Healthcare Hamilton, together with colleagues at other partnering ...

The Pfizer Foundation announces $5 million in gran…

The Pfizer Foundation announced a new $5 million grant commitment to initiatives in low- and middle-income countries that provide family planning access and education for...

Study finds antioxidant-enriched vitamin reduces r…

Researchers at Children's Hospital Colorado (Children's Colorado) and the University of Colorado School of Medicine have found that taking a specially formulated antioxid...