Inducing an identity crisis in liver cells may help diabetics

It is now possible to reprogram cells from the liver into the precursor cells that give rise to the pancreas by altering the activity of a single gene. A team of researchers at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) has now accomplished this feat in mice. Their results should make it feasible to help diabetic patients through cell therapy.

In patients suffering from type I diabetes, their immune system turns against their own bodies and destroys a type of pancreatic cell called islet cells. Without these cells, the pancreas is unable to produce the hormone insulin and blood glucose rises, which leads to diabetic disease. At that point, such patients need to inject insulin for the rest of their lives.

A way to provide a lasting help to the afflicted may be to grow new pancreatic cells outside of the body. MDC group leader and researcher Dr. Francesca has been pursuing the idea of reprogramming liver cells to become pancreatic cells. Dr. Spagnoli's team has now succeeded in thrusting liver cells into an "identity crisis" - in other words, to reprogram them to take on a less specialized state - and then stimulate their development into cells with pancreatic properties.

Promising success in animal experiments
A gene called TGIF2 plays a crucial role in the process. TGIF2 is active in the tissue of the pancreas but not in the liver. For the current study Dr. Nuria Cerda Esteban, at the time a PhD student in Dr. Spagnoli's lab, tested how cells from mouse liver behave when they are given additional copies of the TGIF2 gene.

In the experiment, cells first lost their hepatic (liver) properties, then acquired properties of the pancreas. The researchers transplanted the modified cells into diabetic mice. Soon after this intervention, the animals' blood glucose levels improved, indicating that the cells indeed were replacing the functions of the lost islet cells. The results bring cell therapies for human diabetic patients one step closer to reality.

The obvious next step is to translate the findings from the mouse to humans. The Spagnoli lab is currently testing the strategy on human liver cells in a project funded in 2015 by the European Research Council. "There are differences between mice and humans, which we still have to overcome," Spagnoli says. "But we are well on the path to developing a 'proof of concept' for future therapies."

Nuria Cerdá-Esteban et al.
Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2.
Nature Communications. doi: 10.1038/ncomms14127.

Most Popular Now

New analysis shows Novartis Entresto improves glyc…

Novartis has announced results of a new post-hoc analysis in a subgroup of patients with reduced ejection fraction heart failure (HFrEF) and diabetes suggesting that Entr...

Read more

Mutual Recognition promises new framework for phar…

The United States and the European Union (EU) completed an exchange of letters to amend the Pharmaceutical Annex to the 1998 U.S.-EU Mutual Recognition Agreement. Under t...

Read more

Potential drug candidates halt prostate and breast…

Scientists on the Florida campus of The Scripps Research Institute (TSRI) have designed two new drug candidates to target prostate and triple negative breast cancers. The...

Read more

Novartis' Cosentyx shows almost all psoriasis pati…

Novartis has announced a new analysis showing that moderate-to-severe psoriasis patients treated with Cosentyx® (secukinumab) rapidly regain clear or almost clear skin (P...

Read more

Scientists stimulate immune system, stop cancer gr…

Researchers at the University of Illinois at Chicago report that increasing expression of a chemical cytokine called LIGHT in mice with colon cancer activated the immune ...

Read more

Johnson & Johnson completes acquisition of Abb…

Johnson & Johnson (NYSE: JNJ) has completed the acquisition of Abbott Medical Optics (AMO), a wholly-owned subsidiary of Abbott. The all-cash $4.325 billion acquisition w...

Read more

New England Journal of Medicine publishes long-ter…

In 2001 the U.S. Food and Drug Administration granted priority review for imatinib mesylate, sold under the name Gleevec®*, as an oral therapy for patients with chronic m...

Read more

Bristol-Myers Squibb expands focus on precision me…

Bristol-Myers Squibb Company (NYSE: BMY) announced its equity investment and plans for a research collaboration with GRAIL Inc., a life sciences company whose mission is ...

Read more

Volkswagen's excess emissions will lead to 1,200 p…

In September 2015, the German Volkswagen Group, the world's largest car producer, admitted to having installed "defeat devices" in 11 million diesel cars sold worldwide b...

Read more

MedImmune and Sanofi Pasteur form alliance to deve…

MedImmune, the global biologics research and development arm of AstraZeneca, and Sanofi Pasteur, the vaccines division of Sanofi, have announced an agreement to develop a...

Read more

Cooking at home tonight? It's likely cheaper and h…

Researchers from the University of Washington School of Public Health have been peeking into kitchens - via interviews - for years now. They've just published results sho...

Read more

Human antibody for Zika virus promising for treatm…

Researchers have determined the structure of a human antibody bound to the Zika virus, revealing details about how the antibody interferes with the infection mechanism - ...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]