Potential new cancer treatment activates cancer-engulfing cells

Macrophages are a type of white blood cell that can engulf and destroy cancer cells. A research group led by Professor Matozaki Takashi, Kobe University Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, discovered that by using an antibody for a particular protein found on macrophages, the macrophage is activated, and cancer cells are effectively eliminated. This discovery could lead to the development of new cancer treatments. The findings were published on January 12 in the online version of JCI Insight.

Cancer is a leading cause of death worldwide. In recent years, attention has been drawn by the effectiveness of treatment that targets specific proteins that express on both cancer cells and healthy cells including immune system cells (targeted therapy). However, issues with this treatment include the emergence of cancer cells resistant to targeted drugs, and side effects which differ from those for conventional anticancer drugs.

In their previous research, Professor Matozaki's research group discovered that when the protein SIRPα, which is expressed on the cell membrane of macrophages, interacts with the protein CD47 which is expressed on the cell membrane of engulfment targets (such as cancer cells and senescent cells), the engulfment ability (phagocytosis) of the macrophages is inhibited. This time, using immunodeficient mice subcutaneously injected with Raji cells (derived from human B-cell lymphoma), the group discovered that an anti-SIRPα antibody, which specifically reacts with SIRPα and inhibits the interaction of CD47 and SIRPα, helps a target drug known as rituximab to suppress tumor growth. Furthermore, they demonstrated that based on anti-SIRPα antibodies that inhibited CD47-SIRPα interaction, the phagocytic properties of macrophages were strengthened by rituximab. The researchers concluded that anti-SIRPα antibodies, which inhibit CD47-SIRPα interaction, could be highly effective against tumors by strengthening the phagocytosis of macrophages for cancer cells using target drugs such as rituximab.

The research group also discovered that both renal cell carcinoma and melanoma express high levels of SIRPα in humans and mice. In mice injected with mouse renal cell carcinoma (RENCA) cells or melanoma cells, they found that the sole administration of anti-SIRPα antibodies suppressed the growth or metastasis of tumors. However, the suppression of tumor growth by anti-SIRPα antibody treatment was weakened in mice whose macrophages had been eliminated. In addition, from phagocytosis experiments using macrophages and renal cell carcinoma cells or melanoma cells, they showed that anti-SIRPα antibodies induce phagocytosis of cancer cells by macrophages through the direct binding to SIRPα on cancer cells; prevent the CD47-SIRPα interaction between cancer cells and macrophages, removing the restraints on phagocytosis of macrophages (activating the macrophages). Therefore, they concluded that the antitumor effects of anti-SIRPα antibodies on SIRPα-expressing cancer cells are based on this dual action.

Recently, anti-PD-1 antibodies that inhibit the functions of the PD-1 protein have demonstrated efficacy as anticancer drugs. The PD-1 protein is one of the immune checkpoint molecules for cytotoxic T-cells. In mice subcutaneously implanted with mouse colon cancer cells (CT26 cells), the simultaneous administration of anti-SIRPα antibodies and anti-PD-1 antibodies has a stronger effect on inhibiting tumor growth compared to their separate administration. The details of the action mechanism for anti-SIRPα antibodies are not fully understood, but simultaneous use of immune checkpoint inhibitors such as anti-PD-1 antibodies that act against cytotoxic T-cells and anti-SIRPα antibodies has a stronger antitumor effect than their separate use.

These findings have clarified that the antibodies for SIRPα, an immune checkpoint molecule for macrophages related to the innate immune system function, can be used as a new cancer treatment. In the future, as well as analyzing the mechanism for the antitumor effect of anti-SIRPα antibodies in more detail, while carefully assessing the safety of the treatment, anti-SIRPα antibodies can potentially be developed as anticancer drugs.

Yanagita T, Murata Y, Tanaka D, Motegi SI, Arai E, Daniwijaya EW, Hazama D, Washio K, Saito Y, Kotani T, Ohnishi H, Oldenborg PA, Garcia NV, Miyasaka M, Ishikawa O, Kanai Y, Komori T, Matozaki T.
Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy.
JCI Insight. 2017 Jan 12;2(1):e89140. doi: 10.1172/jci.insight.89140.

Most Popular Now

Making biological drugs with spider silk protein

Researchers at Karolinska Institutet in Sweden have managed to synthesise lung surfactant, a drug used in the care of preterm babies, by mimicking the production of spide...

Boehringer Ingelheim builds Digital Lab "BI X…

With the founding of BI X as independent subsidiary Boehringer Ingelheim will focus on breakthrough innovative digital solutions in healthcare from idea to pilot. The sta...

Bacteria used as factories to produce cancer drugs

Researchers at the Novo Nordisk Foundation Center for Biosustainability in Denmark have developed a method of producing P450 enzymes - used by plants to defend against pr...

One in 3 high blood pressure patients failing to t…

One in three people who suffer from high blood pressure are failing to take medication as prescribed by their healthcare professionals, a new study led by the University ...

FDA Advisory Committee recommends approval of Pfiz…

Pfizer Inc. (NYSE:PFE) today announced the United States (U.S.) Food and Drug Administration (FDA) Oncologic Drugs Advisory Committee (ODAC) recommended approval of the C...

Bristol-Myers Squibb announces new collaboration t…

Bristol-Myers Squibb Company (NYSE:BMY) announced today it has entered into a clinical research collaboration with Novartis to investigate the safety, tolerability and ef...

Clinical trial shows experimental drug's ability t…

By adding an experimental drug to a standard chemotherapy regimen, a subset of patients with metastatic pancreatic cancer had a significantly longer period before the can...

Take a coffee or tea break to protect your liver

Chronic liver diseases rank as the 12th cause of death worldwide and many of these disorders are associated with unhealthy lifestyles. Conversely, a healthier lifestyle c...

Internet withdrawal increases heart rate and blood…

Scientists and clinicians from Swansea and Milan have found that some people who use the internet a lot experience significant physiological changes such as increased hea...

Novartis presents data demonstrating efficacy of A…

Novartis today announced that it will present 19 scientific abstracts at the 59th Annual Scientific Meeting of the American Headache Society (June 8-11, 2017, Boston, USA...

AstraZeneca enters agreement with Grünenthal to di…

AstraZeneca has entered an agreement with Grünenthal for the global rights to Zomig (zolmitriptan) outside Japan. Zomig is indicated for the acute treatment of migraines ...

Pfizer and Lilly receive FDA Fast Track designatio…

Pfizer Inc. (NYSE:PFE) and Eli Lilly and Company (NYSE:LLY) today announced that the U.S. Food and Drug Administration (FDA) has granted Fast Track designation for tanezu...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]