Research

Chaperone compounds offer new approach to Alzheimer's treatment

A team of researchers from Columbia University Medical Center (CUMC), Weill Cornell Medical College, and Brandeis University has devised a wholly new approach to the treatment of Alzheimer's disease involving the so-called retromer protein complex. Retromer plays a vital role in neurons, steering amyloid precursor protein (APP) away from a region of the cell where APP is cleaved, creating the potentially toxic byproduct amyloid-beta, which is thought to contribute to the development of Alzheimer's.

Using computer-based virtual screening, the researchers identified a new class of compounds, called pharmacologic chaperones, that can significantly increase retromer levels and decrease amyloid-beta levels in cultured hippocampal neurons, without apparent cell toxicity. The study was published today in the online edition of the journal Nature Chemical Biology.

"Our findings identify a novel class of pharmacologic agents that are designed to treat neurologic disease by targeting a defect in cell biology, rather than a defect in molecular biology," said Scott Small, MD, the Boris and Rose Katz Professor of Neurology, Director of the Alzheimer's Disease Research Center in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at CUMC, and a senior author of the paper. "This approach may prove to be safer and more effective than conventional treatments for neurologic disease, which typically target single proteins."

In 2005, Dr. Small and his colleagues showed that retromer is deficient in the brains of patients with Alzheimer's disease. In cultured neurons, they showed that reducing retromer levels raised amyloid-beta levels, while increasing retromer levels had the opposite effect. Three years later, he showed that reducing retromer had the same effect in animal models, and that these changes led to Alzheimer's-like symptoms. Retromer abnormalities have also been observed in Parkinson's disease.

In discussions at a scientific meeting, Dr. Small and co-senior authors Gregory A. Petsko, DPhil, Arthur J. Mahon Professor of Neurology and Neuroscience in the Feil Family Brain and Mind Research Institute and Director of the Helen and Robert Appel Alzheimer's Disease Research Institute at Weill Cornell Medical College, and Dagmar Ringe, PhD, Harold and Bernice Davis Professor in the Departments of Biochemistry and Chemistry and in the Rosenstiel Basic Medical Sciences Research Center at Brandeis University, began wondering if there was a way to stabilize retromer (that is, prevent it from degrading) and bolster its function. "The idea that it would be beneficial to protect a protein's structure is one that nature figured out a long time ago," said Dr. Petsko. "We're just learning how to do that pharmacologically."

Other researchers had already determined retromer's three-dimensional structure. "Our challenge was to find small molecules—or pharmacologic chaperones - that could bind to retromer's weak point and stabilize the whole protein complex," said Dr. Ringe.

This was accomplished through computerized virtual, or in silico, screening of known chemical compounds, simulating how the compounds might dock with the retromer protein complex. (In conventional screening, compounds are physically tested to see whether they interact with the intended target, a costlier and lengthier process.) The screening identified 100 potential retromer-stabilizing candidates, 24 of which showed particular promise. Of those, one compound, called R55, was found to significantly increase the stability of retromer when the complex was subjected to heat stress.

The researchers then looked at how R55 affected neurons of the hippocampus, a key brain structure involved in learning and memory. "One concern was that this compound would be toxic," said Dr. Diego Berman, assistant professor of clinical pathology and cell biology at CUMC and a lead author. "But R55 was found to be relatively non-toxic in mouse neurons in cell culture."

More important, a subsequent experiment showed that the compound significantly increased retromer levels and decreased amyloid-beta levels in cultured neurons taken from healthy mice and from a mouse model of Alzheimer's. The researchers are currently testing the clinical effects of R55 in the actual mouse model.

"The odds that this particular compound will pan out are low, but the paper provides a proof of principle for the efficacy of retromer pharmacologic chaperones," said Dr. Petsko. "While we're testing R55, we will be developing chemical analogs in the hope of finding compounds that are more effective."

The paper is titled, "Pharmacological chaperones stabilize retromer to limit APP processing." The other contributors are Vincent J. Mecozzi (Brandeis University), Sabrina Simoes (CUMC), Chris Vetanovetz (CUMC), Mehraj R. Awal (Brandeis University), Vivek M. Patel (CUMC), and Remy T. Schneider (CUMC).

The authors declare no financial or other conflicts of interests.

The study was supported by the grants from the National Institutes of Health (AG025161), the Alzheimer's Association, Developmental Therapeutics Program of the National Cancer Institute, Medkoo Biosciences, the Fidelity Biosciences Research Initiative, the McKnight Endowment for Neuroscience, the Ellison Medical Foundation, and the Gottlieb Family Foundation.

Most Popular Now

New antibiotic Zavicefta approved i…

AstraZeneca today announced that the European Commission (EC) has granted marketing authorisation for Zavicefta (ceftazidime-avibactam, previously known as CAZ AVI), a ne...

Read more

Novo Nordisk and Aarhus University …

Novo Nordisk and Aarhus University's Science and Technology faculty today signed a collaboration agreement to strengthen protein technology research and development. Unde...

Read more

AstraZeneca enters licensing agreem…

AstraZeneca today announced that it has entered into agreements that support its strategic focus on three main therapy areas; Respiratory, Inflammation and Autoimmunity, ...

Read more

Novartis adds bispecific antibodies…

Today Novartis announced that it has entered into a collaboration and licensing agreement with Xencor for the development of bispecific antibodies for treating cancer. Th...

Read more

Bristol-Myers Squibb and PsiOxus Th…

Bristol-Myers Squibb Company (NYSE: BMY) and PsiOxus Therapeutics, Ltd. (PsiOxus) today announced an exclusive clinical collaboration agreement to evaluate the safety, to...

Read more

Bristol-Myers Squibb acquires Cormo…

Bristol-Myers Squibb Company (NYSE:BMY) and Cormorant Pharmaceuticals announced today that Bristol-Myers Squibb has acquired all of the outstanding capital stock of Cormo...

Read more

Sanofi Pasteur signs research agree…

Sanofi and its vaccines global business unit Sanofi Pasteur announced today a Cooperative Research and Development Agreement with the Walter Reed Army Institute of Resear...

Read more

Merck and Pfizer initiate Phase III…

Merck KGaA, Darmstadt, Germany, and Pfizer (NYSE: PFE) have announced the initiation of a Phase III study, JAVELIN Ovarian 100, to evaluate the efficacy and safety of ave...

Read more

FDA advances Precision Medicine Ini…

In support of the President’s Precision Medicine Initiative, the U.S. Food and Drug Administration has issued two draft guidances that, when finalized, will provide a fle...

Read more

Merck commits €1.5 million to the G…

Merck, a leading science and technology company, today announced it would continue to support the advancement of medical science in the field of fertility through the Gra...

Read more

Laboratory drug trials could lead t…

A new drug with the potential to reverse or slow the development of asthma is being tested by researchers at The University of Queensland. Developed by international phar...

Read more

Twisting and turning to target anti…

Researchers are getting closer to understanding how some natural antibiotics work so they can develop drugs that mimic them. A recent review commissioned by the British g...

Read more

Digest World Pharma Newsletter

Subscribe to our weekly Digest World Pharma Newsletter and stay updated on the latest World Pharma News. Subscribe now, it's free!

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]

© World Pharma News 2006 - 2016