Drug activates virus against cancer

Parvoviruses cause no harm in humans, but they can attack and kill cancer cells. Since 1992, scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have been studying these viruses with the aim of developing a viral therapy to treat glioblastomas, a type of aggressively growing brain cancer. A clinical trial has been conducted since 2011 at the Heidelberg University Neurosurgery Hospital to test the safety of treating cancer patients with the parvovirus H-1.

"We obtained impressive results in preclinical trials with parvovirus H-1 in brain tumors," says Dr. Antonio Marchini, a virologist at DKFZ. "However, the oncolytic effect of the viruses is weaker in other cancers. Therefore, we are searching for ways to increase the therapeutic potential of the viruses."

In doing so, the virologists also tested valproic acid, a drug belonging to a group of drugs called HDAC inhibitors. The effect of these inhibitors is to raise the transcription of many genes that have been chemically silenced. Valproic acid is commonly used to treat epilepsy and has also proven effective in treating specific types of cancer.

The researchers initially used a combination of parvoviruses and valproic acid to treat tumor cells that had been obtained from cervical and pancreatic carcinomas and raised in the culture dish. In both types of cancer, the drug raised the rate of virus-induced cell death; in some cases, the cancer cells were even completely eliminated.

The encouraging results obtained in cultured cells were confirmed in cervical and pancreatic tumors that had been transplanted to rats. After the animals were treated with a combination of parvoviruses and valproic acid, in some cases the tumors regressed completely and animals remained free of recurrences over a one-year period. In contrast, animals treated with the same virus dose without the drug displayed no regression, not even when a 20-times higher dose of viruses was administered.

The virologists were also able to unravel the molecular mechanism by which valproic acid assists parvoviruses in fighting cancer: Treatment with the drug activates a viral protein called NS1, which is toxic. This helps the viruses replicate more rapidly and kill cancer cells more effectively.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

"The synergistic effect of a combination of parvoviruses and valproic acid enables us to deliver both the viruses and the drug at low doses, which prevents severe side effects," Marchini explains. "The results are encouraging us to carry out further tests of this combination therapy. We believe it has the potential to arrest tumor growth in severe cases of cancer."

Junwei Li, Serena Bonifati, Georgi Hristov, Tiina Marttila, Severine Valmary-Degano,Sven Stanzel, Martina Schnölzer, Christiane Mougin, Marc Aprahamian, Svitlana P. Grekova, Zahari Raykov, Jean Rommelaere and Antonio Marchini: Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Molecular Medicine 2013, DOI: 10.1002/emmm.201302796

Most Popular Now

A need for bananas? Dietary potassium regulates ca…

Bananas and avocados - foods that are rich in potassium - may help protect against pathogenic vascular calcification, also known as hardening of the arteries. University ...

FDA awards 15 grants for clinical trials to stimul…

The U.S. Food and Drug Administration today announced that it has awarded 15 new clinical trial research grants totaling more than $22 million over the next four years to...

Amgen and CytomX Therapeutics announce strategic c…

Amgen (NASDAQ:AMGN) and CytomX Therapeutics, Inc., (NASDAQ:CTMX) today announced that the companies have entered into a strategic collaboration in immuno-oncology. The co...

Novartis and The Max Foundation transform pioneeri…

Novartis announced a new collaboration with The Max Foundation to support continued access to treatment at no cost for nearly 34,000 current patients with chronic myeloid...

Roche launches NAVIFY Tumor Board solution to prov…

Roche (SIX: RO, ROG; OTCQX:RHHBY), has announced the launch of the NAVIFY Tumor Board solution, a clinical workflow and decision support software that optimises decision-...

AbbVie and Bristol-Myers Squibb announce clinical …

AbbVie (NYSE: ABBV) and Bristol-Myers Squibb Company (NYSE: BMY) today announced a clinical trial collaboration to evaluate the combination of AbbVie's investigational an...

Tagrisso granted breakthrough therapy designation …

AstraZeneca announced that the US Food and Drug Administration (FDA) has granted Breakthrough Therapy Designation (BTD) for Tagrisso (osimertinib) for the 1st-line treatm...

Pfizer launches novel programs to put important su…

Pfizer today unveils enhanced offerings to help patients manage their life with cancer. Pfizer Oncology Together is a first-of-its-kind program for patients taking Pfizer...

Novartis and UC Berkeley collaborate to tackle 'un…

Novartis has joined forces with researchers from the University of California, Berkeley, to develop new technologies for the discovery of next-generation therapeutics, pu...

Printed meds could reinvent pharmacies, drug resea…

A technology that can print pure, ultra-precise doses of drugs onto a wide variety of surfaces could one day enable on-site printing of custom-dosed medications at pharma...

Danish discovery can pave the way for more effecti…

More than 600,000 Danes are being treated with cholesterol lowering medicine. 98 per cent of them are treated with statins, which curb the body's own production of choles...

Amgen and Simcere announce strategic collaboration…

Amgen (NASDAQ: AMGN) and Simcere Pharmaceutical Group have announced the execution of an exclusive agreement to co-develop and commercialize four biosimilars in China. Th...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]