Drug activates virus against cancer

Parvoviruses cause no harm in humans, but they can attack and kill cancer cells. Since 1992, scientists at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have been studying these viruses with the aim of developing a viral therapy to treat glioblastomas, a type of aggressively growing brain cancer. A clinical trial has been conducted since 2011 at the Heidelberg University Neurosurgery Hospital to test the safety of treating cancer patients with the parvovirus H-1.

"We obtained impressive results in preclinical trials with parvovirus H-1 in brain tumors," says Dr. Antonio Marchini, a virologist at DKFZ. "However, the oncolytic effect of the viruses is weaker in other cancers. Therefore, we are searching for ways to increase the therapeutic potential of the viruses."

In doing so, the virologists also tested valproic acid, a drug belonging to a group of drugs called HDAC inhibitors. The effect of these inhibitors is to raise the transcription of many genes that have been chemically silenced. Valproic acid is commonly used to treat epilepsy and has also proven effective in treating specific types of cancer.

The researchers initially used a combination of parvoviruses and valproic acid to treat tumor cells that had been obtained from cervical and pancreatic carcinomas and raised in the culture dish. In both types of cancer, the drug raised the rate of virus-induced cell death; in some cases, the cancer cells were even completely eliminated.

The encouraging results obtained in cultured cells were confirmed in cervical and pancreatic tumors that had been transplanted to rats. After the animals were treated with a combination of parvoviruses and valproic acid, in some cases the tumors regressed completely and animals remained free of recurrences over a one-year period. In contrast, animals treated with the same virus dose without the drug displayed no regression, not even when a 20-times higher dose of viruses was administered.

The virologists were also able to unravel the molecular mechanism by which valproic acid assists parvoviruses in fighting cancer: Treatment with the drug activates a viral protein called NS1, which is toxic. This helps the viruses replicate more rapidly and kill cancer cells more effectively.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

"The synergistic effect of a combination of parvoviruses and valproic acid enables us to deliver both the viruses and the drug at low doses, which prevents severe side effects," Marchini explains. "The results are encouraging us to carry out further tests of this combination therapy. We believe it has the potential to arrest tumor growth in severe cases of cancer."

Junwei Li, Serena Bonifati, Georgi Hristov, Tiina Marttila, Severine Valmary-Degano,Sven Stanzel, Martina Schnölzer, Christiane Mougin, Marc Aprahamian, Svitlana P. Grekova, Zahari Raykov, Jean Rommelaere and Antonio Marchini: Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Molecular Medicine 2013, DOI: 10.1002/emmm.201302796

Most Popular Now

Top 20 World Pharma News of 2016

Look back at the most prominent moments from the year 2016. We are proud to announce the 20 most popular World Pharma News from 2016, the most commonly viewed news accord...

Read more

New precision medicine tool helps optimize cancer …

Columbia University Medical Center (CUMC) researchers have created a computational tool that can rapidly predict which genes are implicated in an individual's cancer and ...

Read more

Roche's emicizumab for haemophilia A meets primary…

Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that the primary endpoint has been met for the phase III HAVEN 1 study evaluating emicizumab prophylaxis in people 12 y...

Read more

Sanofi and Boehringer Ingelheim confirm Closing of…

Sanofi and Boehringer Ingelheim confirmed that the strategic transaction signed in June 2016, which consists of an exchange of Sanofi's animal health business (Merial) an...

Read more

Diabetes, heart disease, and back pain dominate US…

Just 20 conditions make up more than half of all spending on health care in the United States, according to a new comprehensive financial analysis that examines spending ...

Read more

FDA approves first drug for spinal muscular atroph…

The U.S. Food and Drug Administration has approved Spinraza (nusinersen), the first drug approved to treat children and adults with spinal muscular atrophy (SMA), a rare ...

Read more

Novartis invests in next generation therapies to r…

Novartis announced today a collaboration and option agreement with Ionis Pharmaceuticals, Inc. and its affiliate Akcea Therapeutics, Inc., to license two novel treatments...

Read more

Topical treatment activates immune system to clear…

A combination of two FDA-approved drugs - a topical chemotherapy and an immune-system-activating compound - was able to rapidly clear actinic keratosis lesions from patie...

Read more

Vaccine shows promising results for early-stage br…

Deregulation and inhibition of the immune system contributes to cancer development. Many therapeutic strategies aim to re-stimulate the immune system to recognize cancer ...

Read more

Bristol-Myers Squibb announces immunotherapy clini…

Bristol-Myers Squibb Company (NYSE:BMY) today announced a new clinical research collaboration with Janssen Biotech, Inc. to evaluate the combination of Bristol-Myers Squi...

Read more

Anti-aging therapies targeting senescent cells: Fa…

It's an exciting time to be an elderly mouse. Researchers believe that by removing senescent cells (cells with a persistent damage response), which naturally accumulate w...

Read more

Novo Nordisk and Glooko partner to develop digital…

Novo Nordisk and Glooko today announced that the two companies will work together to deliver jointly-developed and branded digital health solutions for people with diabet...

Read more

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]