Research

International study suggests improved treatment alternative for lymphoid leukemia

Discovering what they call the "Achilles' heel" for lymphoid leukemia, an international research team has tested a possible alternative treatment that eradicated the disease in mouse models. Reporting their results in the journal Cancer Cell, the scientists said the targeted molecular therapy described in their study could have direct implications for current treatment of Acute Lymphoid Leukemia (ALL) in people.

Led by researchers at Cincinnati Children's Hospital Medical Center and the Institut de recherches cliniques de Montreal (ICRM), the study found that leukemic cells depend on a protein called Gfi1 for survival. Removing the protein in mouse models of the disease weakened and killed the leukemia cells. Researchers said this should make the leukemia more susceptible to chemo and radiation therapies – the current frontline treatments for ALL.

"Chemo and radiation therapies are very non-specific and can be toxic to patients. Our findings suggest that combining the inhibition of Gfi1 with these treatments may allow the use of lower cytotoxic doses and directly benefit patients," said H. Leighton Grimes, PhD, co-senior investigator on the study and researcher in the divisions of Cellular and Molecular Immunology and Experimental Hematology at Cincinnati Children's.

Also collaborating was co-senior investigator, Tarik Möröy, PhD, president and scientific director of the ICRM in Montreal.

The researchers said the need for better treatment options is evident. Beside the potential toxicity of current therapeutic options, many ALL patients relapse after initial remission of their disease.

A cancer that affects blood cells and the immune system, ALL is the most common type of leukemia in children from infancy up to age 19, according to the Leukemia and Lymphoma Society of America. ALL occurs most often in the first decade of life but increases in frequency again in older individuals. According to the National Cancer Institute, the overall survival rate for all ages of people with ALL is 66.4 percent and 90.8 percent for children under the age of 5 years.

During the onset of a disease like ALL, cancer signals among cells activate a protein called p53, which is often referred to as the "guardian of the genome." A repressor of tumor growth, p53 normally initiates a DNA repair program that is supposed to induce programmed cell death to stop or slow down tumor progression.

In the case of ALL, the researchers said the disease relies on the Gfi1 protein to get around p53's tumor repressing capabilities by essentially overriding p53. Gfi1 has an important role in the normal development of lymphoid cells. But analyses of ALL mouse models and primary human tumors showed that Gfi1 is overexpressed in the disease state.

When the researchers removed Gfi1 in established mouse lymphoid tumors, the leukemia regressed through p53-induced cell death. Next, to see if removal of Gfi1 would be effective in modeled human ALL, the research team inserted T-cell leukemia cells from human patients into mice. Inhibiting Gfi1 in this instance stopped the progression of human leukemia in the animals without any harmful effects.

The scientists are continuing their research to see if results of the current study will be translatable to human patients.

Other collaborators on the study included co-first authors, James Phelan, PhD, a former graduate student in Grimes' laboratory (now a postdoctoral fellow at the National Cancer Institute of the National Institutes of Health), and Cyrus Khandanpour, MD, a former post-doctoral fellow in Dr. Möröy's laboratory (presently a physician scientist at University Hospital of the University of Duisburg-Essen in Germany).

Funding for the research came in part from the National Institutes of Health (grant numbers CA105152, CA159845, P30 DK090971), the Canadian Institutes of Health Research (MOP-84238, MOP-111011) the the Canada Research Chair program, Leukemia and Lymphoma Society of America, CancerFree Kids, Alex's Lemonade Stand, the German Cancer Fund, the Cole Foundation, a University of Cincinnati Cancer Therapeutics T32 training grant (T32-CA117846) and a Pelotonia Fellowship.

Most Popular Now

A new method cuts the cost of drug-…

EPFL (École polytechnique fédérale de Lausanne) scientists design a new method to cheaply produce some of the most important chemical compounds in the pharmaceutical indu...

Read more

Six leading scientists to receive p…

Today Novartis announced that six scientists will receive the 2016 Novartis Prizes for Immunology at the upcoming 16th International Congress of Immunology (ICI) in Melbo...

Read more

Pfizer announces publication of new…

Pfizer Inc. (NYSE:PFE) announced the publication of a new post-hoc analysis of data from three studies of VYNDAQEL in patients with mild transthyretin familial amyloid po...

Read more

Natural compound from a deep-water …

Scientists at Florida Atlantic University's Harbor Branch Oceanographic Institute found that a deep-water marine sponge collected off of Fort Lauderdale's coast contains ...

Read more

Bayer and CRISPR Therapeutics joint…

Casebia Therapeutics, the joint venture founded by Bayer and CRISPR Therapeutics, started its operations in Cambridge, MA, U.S. In December, 2015 Bayer and CRISPR Therape...

Read more

Researchers develop safer opioid pa…

An international team of researchers - led by scientists at UC San Francisco, Stanford University, the University of North Carolina (UNC), and the Friedrich-Alexander Uni...

Read more

Amgen and Advaxis enter global canc…

Amgen (NASDAQ:AMGN) and Advaxis, Inc. (NASDAQ:ADXS) announced a global agreement for the development and commercialization of Advaxis' ADXS-NEO, a novel, preclinical inve...

Read more

Legions of nanorobots target cancer…

Researchers from Polytechnique Montréal, Université de Montréal and McGill University have just achieved a spectacular breakthrough in cancer research. They have develope...

Read more

Why is breast cancer common but hea…

Malignant cancers strike certain organs, such as the colon or breast, more often than others. In an Opinion publishing August 9 in Trends in Cancer, researchers propose t...

Read more

AstraZeneca and Lilly receive FDA F…

AstraZeneca and Eli Lilly and Company (Lilly) today announced they have received US Food and Drug Administration (FDA) Fast Track designation for the development programm...

Read more

Esketamine receives Breakthrough Th…

Janssen Research & Development, LLC, one of the Janssen Pharmaceutical Companies of Johnson & Johnson, announced that the U.S. Food and Drug Administration (FDA) has gran...

Read more

Diabetes drug may also offer vascul…

Obesity and Type 2 diabetes are associated with vascular stiffening and the development of cardiovascular disease. Obese and diabetic premenopausal women are most at risk...

Read more

Digest World Pharma Newsletter

Subscribe to our weekly Digest Newsletter and stay updated on the latest World Pharma News. Subscribe now, it's free!

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]

© World Pharma News 2006 - 2016