Scientists discover new way to target cancer

Scientists have discovered a new way to target cancer through manipulating a master switch responsible for cancer cell growth. The findings, published in the journal Cancer Cell, reveal how cancer cells grow faster by producing their own blood vessels.

Cancer cells gain the nutrients they need by producing proteins that make blood vessels grow, helping deliver oxygen and sugars to the tumour. These proteins are vascular growth factors like VEGF - the target for the anti-cancer drug Avastin. Making these proteins requires the slotting together of different parts of genes, a process called splicing.

Scientists at UWE Bristol and the University of Bristol discovered that mutations in one specific cancer gene can control how splicing is balanced, allowing a master switch in the cell to be turned on. This master switch of splicing makes cancer cells grow faster, and blood vessels to grow more quickly, as they alter how VEGFs are put together.

In experimental models, the researchers found that by using new drugs that block this master switch they prevented blood vessel growth and stopped the growth of cancers.

Dr Michael Ladomery spearheading the work from UWE Bristol, said: "The research clearly demonstrates that it may be possible to block tumour growth by targeting and manipulating alternative splicing in patients, adding to the increasingly wide armoury of potential anti-cancer therapies."

Professor David Bates who led the team from the University of Bristol's School of Physiology and Pharmacology, said: "This enables us to develop new classes of drugs that target blood vessel growth, in cancer and other diseases like blindness and kidney disease."

The work, which started on kidney cancer, also involved groups at Southmead Hospital, where patients with kidney disease helped by allowing tissues that had been removed during surgery to be used in the research.

Professor Steve Harper, Consultant Nephrologist and part of the research team, said: "This shows how important it is for patients, doctors and scientists to come together in an excellent environment like Bristol to make these groundbreaking discoveries."

Professor Moin Saleem, Consultant Pediatric Nephrologist, whose lab helped to make the cells used, added: "We are really grateful to the patients who allowed their cells to be used in this research, as we hope it will eventually help the development of new drugs."

The paper, entitled 'WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing', is published in Cancer Cell. The research was sponsored by a UWE Bristol Faculty PhD studentship, which funded Elianna Amin, the first author on the paper, and by University of Bristol research grants from the British Heart Foundation, Cancer Research UK, Wellcome Trust, Medical Research Council Fight for Sight and the Skin Cancer Research Fund.

Most Popular Now

Aspirin green light for brain bleed stroke patient…

People who suffer a stroke caused by bleeding in the brain - known as brain haemorrhage - can take common medicines without raising their risk of another stroke, a major ...

Cancer cells are quick-change artists adapting to …

Until now, researchers have assumed that the growth of solid tumors originates from cancer stem cells characterized by specific surface markers, which develop in a fixed...

APRINOIA Therapeutics awarded grant from The Micha…

APRINOIA Therapeutics, a clinical-stage biotechnology company with a pipeline of therapeutics and imaging diagnostics for neurodegenerative diseases, announces today that...

Benralizumab not effective reducing exacerbations …

More than 15.3 million people in the U.S. suffer from chronic obstructive pulmonary disease (COPD), which is the third leading cause of death in this country, according t...

Pfizer announces top-line results from Phase 3 Tri…

Pfizer Inc. (NYSE: PFE) announced today that a Phase 3 study to assess the use of LYRICA® (pregabalin) as adjunctive therapy for epilepsy patients 5 to 65 years of age wi...

Novartis phase II data for new inhaled combination…

Novartis announced today that new phase II data for IND/GLY/MF (QVM149), an investigational, once-daily, fixed dose combination asthma treatment containing indacaterol ac...

New data show Symbicort reduces attacks in mild as…

New data from Novel START, an open-label trial designed to reflect real-world practice, has demonstrated the effectiveness of Symbicort Turbuhaler (budesonide/formoterol)...

Cannabis use among older adults rising rapidly

Cannabis use among older adults is growing faster than any other age group but many report barriers to getting medical marijuana, a lack of communication with their docto...

Merck pioneers new effort to see MS from the insid…

Merck, a leading science and technology company, joins the global multiple sclerosis (MS) community in recognition of World MS Day, an initiative created by the Multiple ...

Amgen joins with community oncology networks for n…

Amgen (NASDAQ: AMGN), along with leading community oncology networks, today announced the launch of Amgen Community Oncology Research Collaborators (ACORC), a new initiat...

Bayer receives U.S. FDA breakthrough therapy desig…

Bayer announced today that the U.S. Food and Drug Administration (FDA) granted Breakthrough Therapy Designation for copanlisib (Aliqopa™) for the treatment of adult patie...

Roche's personalised medicine entrectinib shrank t…

Roche (SIX: RO, ROG; OTCQX: RHHBY) announced positive data from the Phase I/II STARTRK-NG study, evaluating the investigational medicine entrectinib in children and adole...