Novartis teams up with Harvard to develop next generation biomaterial systems to deliver immunotherapies

NovartisNovartis announced today that it is teaming up with scientists from the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Dana-Farber Cancer Institute to develop biomaterial systems for its portfolio of immuno-oncology therapies.

The licensed biomaterial systems aim to overcome barriers that have hampered traditional cancer vaccines, including their limited duration of action and lack of targeting to specific cancer cells. Through many years' work, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), the Wyss Institute, and Dana-Farber have engineered the biomaterial systems with an aim to provide sustained delivery of immunotherapies and target specific types of cancer. Novartis will further collaborate with the team at the Wyss Institute to advance development of the biomaterial systems, investigating their use to deliver agents from its broad and deep portfolio of second-generation immunotherapies.

"Our collaborators have combined the fields of immuno-oncology and material science to develop novel platforms for delivering immunotherapies to combat cancer," said Jay Bradner, President of the Novartis Institutes for BioMedical Research (NIBR). "We look forward to collaborating with the Wyss Institute to further develop this technology in conjunction with our growing immunotherapy portfolio."

The licensing agreement with Harvard's Office of Technology Development and the collaboration with the Wyss Institute support Novartis' efforts to develop combination immunotherapy regimens. New immunotherapies have benefited subsets of cancer patients, presenting opportunities to develop new immuno-oncology treatment strategies to help more patients [1]. Novartis is developing combination immunotherapies in clinical trials.

The implantable and injectable systems are made of biodegradable materials that assemble into porous, three-dimensional structures. In lab experiments, the systems release cell-recruiting factors to attract host dendritic cells and present tumor antigens to those specialized immune cells, intending to bolster immune responses to cancer [2]. While these systems have yet not been proven in human clinical trials, they hold great promise because of their potential to serve as engineered microenvironments to educate the immune system about cancer and initiate immune responses against tumors over a sustained period of time.

The technologies licensed under this agreement for target-specific applications are owned or co-owned by Harvard University, Dana-Farber, and the University of Michigan.

About Novartis

Novartis provides innovative healthcare solutions that address the evolving needs of patients and societies. Headquartered in Basel, Switzerland, Novartis offers a diversified portfolio to best meet these needs: innovative medicines, cost-saving generic and biosimilar pharmaceuticals and eye care. Novartis has leading positions globally in each of these areas. In 2017, the Group achieved net sales of USD 49.1 billion, while R&D throughout the Group amounted to approximately USD 9.0 billion. Novartis Group companies employ approximately 122,000 full-time-equivalent associates. Novartis products are sold in approximately 155 countries around the world.

1. Nat Rev Cancer. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Gotwals P. et. al. 2017.
2. Nat Commun. Injectable cryogel-based whole-cell cancer vaccines. Bencherif S.A. et al. 2015.

Most Popular Now

Delivering insulin in a pill

Given the choice of taking a pill or injecting oneself with a needle, most of us would opt to regulate a chronic health condition by swallowing a pill. But for millions o...

Probiotics can protect the skeletons of older wome…

For the first time in the world, researchers at the University of Gothenburg, Sweden, have demonstrated that probiotics, dietary supplements with health-promoting bacteri...

Alzheimer's breakthrough: Brain metals that may dr…

Alzheimer's disease could be better treated, thanks to a breakthrough discovery of the properties of the metals in the brain involved in the progression of the neurodegen...

Can aspirin treat Alzheimer's?

A regimen of low-dose aspirin potentially may reduce plaques in the brain, which will reduce Alzheimer's disease pathology and protect memory, according to neurological r...

FDA approves first drug comprised of an active ing…

The U.S. Food and Drug Administration today approved Epidiolex (cannabidiol) [CBD] oral solution for the treatment of seizures associated with two rare and severe forms o...

In mice, stem cells seem to work in fighting obesi…

Obesity is an increasing global health problem associated with several comorbidities and a high risk of mortality. A wide spectrum of interventions has been proposed for ...

FDA takes steps to foster greater efficiency in bi…

Today, the agency withdrew the draft guidance, "Statistical Approaches to Evaluate Analytical Similarity," issued in September 2017. The draft guidance, if finalized as w...

Research shows how a moderate dose of alcohol prot…

For at least 20 years, research has shown that for many people, moderate consumption of alcohol can protect the heart, but the reason for this is poorly understood. A stu...

Some existing anti-cancer drugs may act in part by…

Bolstering the notion that RNA should be considered an important drug-discovery target, scientists at Scripps Research have found that several existing, FDA-approved anti...

'Kiss of death' cancer

It's called the 'kiss of death'. Triple negative breast cancer has no targeted drug therapy and, as such, the only hope for these patients is chemotherapy. Triple negativ...

Novartis Clear about Psoriasis survey data highlig…

Novartis announced today the publication of global Clear about Psoriasis survey data in the Journal of the European Academy of Dermatology and Venereology[1]. The publica...

Poliovirus therapy for recurrent glioblastoma has …

A genetically modified poliovirus therapy developed at Duke Cancer Institute shows significantly improved long-term survival for patients with recurrent glioblastoma, wit...