Novartis and UC Berkeley collaborate to tackle 'undruggable' disease targets

NovartisNovartis has joined forces with researchers from the University of California, Berkeley, to develop new technologies for the discovery of next-generation therapeutics, pursuing the vast number of disease targets in cancer and other illnesses that have eluded traditional small-molecule compounds and are considered "undruggable."

"Novartis pioneers new therapeutic paradigms, creating definitive medicines for life-threatening diseases," said Jay Bradner, President of the Novartis Institutes for BioMedical Research. "Our Berkeley alliance powerfully extends our ability to advance discovery of molecules aimed at the historically inaccessible drug targets."

The collaboration establishes the Novartis-Berkeley Center for Proteomics and Chemistry Technologies, based in existing labs at Berkeley, and includes support for joint research projects between Novartis and Berkeley scientists. The projects harness covalent chemoproteomics technology that rapidly maps locations on protein targets-including those that have been considered "undruggable"--where compounds could form lasting bonds while providing starting points for novel therapeutics.

"Never before have we been able to explore what we call the proteome, the totality of over 20,000 proteins in the body, with such breadth, depth and speed," said covalent chemoproteomics expert Daniel Nomura, Director of the Center and Associate Professor of Chemistry, of Molecular and Cell Biology, and of Nutritional Sciences and Toxicology at Berkeley. "Combining technology advances in proteomics and chemistry allows us to imagine creating compounds to bind every known protein in the body, especially those underlying serious diseases such as cancer."

The alliance will also explore the potential of emerging therapeutics known as degraders, which involve the use of bifunctional molecules that bind to disease targets on one end and on the other end to a key component in a cell's natural protein-disposal system. The collaborators plan to test whether the covalent chemoproteomics technology could aid in reducing the time required to create potential degraders from years to months.

"Traditional drug compounds bind to proteins at places that cause them to malfunction, but many disease targets lack these functional binding locations," said John Tallarico, Head of Chemical Biology and Therapeutics at NIBR. "Degraders are different because they can bind to disease targets at non-functional sites and trigger the destruction of the target proteins, resulting in the interference of their function."

Other aspects of the collaboration include screening natural product compounds and using the covalent chemoproteomics system to discover their targets, understanding mechanism of action and developing new platform technology enabling the discovery of compounds to bind to greater numbers of proteins.

About Novartis
Novartis provides innovative healthcare solutions that address the evolving needs of patients and societies. Headquartered in Basel, Switzerland, Novartis offers a diversified portfolio to best meet these needs: innovative medicines, cost-saving generic and biosimilar pharmaceuticals and eye care. Novartis has leading positions globally in each of these areas. In 2016, the Group achieved net sales of USD 48.5 billion, while R&D throughout the Group amounted to approximately USD 9.0 billion. Novartis Group companies employ approximately 119,000 full-time-equivalent associates. Novartis products are sold in approximately 155 countries around the world.

Most Popular Now

Study finds lack of racial diversity in cancer dru…

New research published in JAMA Oncology has found a lack of racial and ethnic diversity in clinical trials for cancer drugs. The study - conducted by researchers from UBC...

Preventing tumor metastasis

Researchers at the Paul Scherrer Institute, together with colleagues from the pharmaceutical company F. Hoffmann-La Roche AG, have taken an important step towards the dev...

A new drug could revolutionize the treatment of ne…

The international team of scientists from Gero Discovery LLC, the Institute of Biomedical Research of Salamanca, and Nanosyn, Inc. has found a potential drug that may pre...

Interactions discovered in cells insulating nerve …

Schwann cells form a protective sheath around nerve fibres and ensure that nerve impulses are transmitted rapidly. If these cells are missing or damaged, severe neurologi...

Anniversary of the pivotal RE-LY® trial marks a de…

Boehringer Ingelheim today announces the ten-year anniversary of the RE-LY® trial publication(1-3) recognising the contribution made in the decade since by patients, heal...

AstraZeneca agrees to buy US FDA Priority Review V…

AstraZeneca announced that it has agreed to buy a US Food and Drug Administration (FDA) Priority Review Voucher (PRV) for a total cash consideration of $95m from a subsid...

Breast cancer can form 'sleeper cells' after drug …

Breast cancer medicines may force some cancer cells into 'sleeper mode', allowing them to potentially come back to life years after initial treatment. These are the early...

Pfizer invests half billion dollars to advance sta…

Pfizer announced an additional half billion dollar investment for the construction of its state-of-the-art gene therapy manufacturing facility in Sanford, North Carolina...

The Pfizer Foundation invests in 20 organizations …

The Pfizer Foundation announced 20 grants* to help non-governmental organizations (NGOs), non-profits and social enterprises address critical health challenges related to...

FDA grants Fast Track designation for Farxiga in c…

AstraZeneca today announced that the US Food and Drug Administration (FDA) has granted Fast Track designation for the development of Farxiga (dapagliflozin) to delay the ...

Amgen and Allergan announce positive top-line resu…

Amgen (NASDAQ:AMGN) and Allergan plc. (NYSE:AGN) today announced positive top-line results from a comparative clinical study evaluating the efficacy and safety of ABP 798...

Experimental validation confirms the ability of ar…

Insilico Medicine, a global leader in artificial intelligence for drug discovery, announced the publication of a paper titled, "Deep learning enables rapid identification...