Bristol-Myers Squibb expands International Immuno-Oncology Network (II-ON)

Bristol-Myers SquibbBristol-Myers Squibb Company (NYSE:BMY) today announced that Columbia University Medical Center and Peter MacCallum Cancer Centre (Peter Mac) have joined the International Immuno-Oncology Network (II-ON), a global peer-to-peer collaboration between Bristol-Myers Squibb and academia that aims to advance Immuno-Oncology (I-O) science and translational medicine to improve patient outcomes. Launched in 2012 by Bristol-Myers Squibb, the II-ON was one of the first networks to bring academia and industry together to further the scientific understanding of I-O, and has expanded from 10 to 15 sites including more than 250 investigators working on over 150 projects across 20 tumor types. The II-ON has generated cutting-edge I-O data that have informed the development of new I-O agents, yielded publications and produced some of the earliest findings on a variety of biomarkers and target identification and validation.

"Bristol-Myers Squibb has long believed the future of cancer research is dependent on investments in science and partnerships. We formed the II-ON to facilitate innovation in I-O science and drug discovery by providing a streamlined framework for peer-to-peer collaboration among global cancer research leaders," said Nils Lonberg, Head of Oncology Biology Discovery at Bristol-Myers Squibb. "The significant discoveries generated by the II-ON over the past five years have not only informed our robust early I-O pipeline, but also serve to advance the entire field. We are proud to collaborate with Columbia University Medical Center and Peter Mac, and together with the entire II-ON will continue to lead pioneering research and heighten our collective understanding of the science behind I-O."

Through the II-ON, Bristol-Myers Squibb is collaborating with leading cancer research institutions around the world to generate innovative I-O science, launch biology-driven trials and seek out cutting-edge technologies with the goal of translating research findings into clinical trials and, ultimately, clinical practice.

"I-O research may be transforming the way we treat cancer," said Charles G. Drake, MD, PhD, Professor of Medicine at Columbia University Medical Center and Director of Genitourinary Oncology and Associate Director for Clinical Research at the Herbert Irving Comprehensive Cancer Center at New York-Presbyterian/Columbia. "The II-ON offers a tremendous opportunity to work smarter and faster along with our colleagues to address fundamental scientific questions in I-O."

"We believe the collective knowledge and research power of the II-ON will generate groundbreaking findings in I-O with the potential to improve outcomes for people affected by cancer," said Professor Joe Trapani, Executive Director Cancer Research and Head of the Cancer Immunology Program at Peter MacCallum Cancer Centre, Melbourne, Australia.

Building on the success of the II-ON, Bristol-Myers Squibb has invested in several other models of scientific collaboration with academic partners across the globe, including the Global Expert Centers Initiative (GECI) and the Immuno-Oncology Integrated Community Oncology Network (IO-ICON). "We believe a one-size-fits-all research approach does not facilitate innovation," said Lonberg. "Our tailored collaborations with academic centers expand our research capabilities and accelerate our collective ability to deliver potentially life-changing results for patients."

About the International Immuno-Oncology Network (II-ON)
The II-ON, formed in 2012, is a global peer-to-peer collaboration between Bristol-Myers Squibb and academia advancing the science of Immuno-Oncology (I-O) through a series of preclinical, translational and biology-focused research objectives. The research in the collaboration is focused on three fundamental scientific pillars: understanding the mechanisms of resistance to immunotherapy; identifying patient populations likely to benefit from immunotherapy; and exploring novel combination therapies that may enhance anti-tumor response through complementary mechanisms of action. The II-ON facilitates the translation of scientific research findings into drug discovery and development, with the goal of introducing new treatment options into clinical practice.

In addition to Bristol-Myers Squibb, the II-ON currently comprises 15 leading cancer research institutions, including: Clinica Universidad Navarra, Dana-Farber Cancer Institute, The Earle A. Chiles Research Institute (Providence Health & Services), Institut Gustave Roussy, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale", Bloomberg-Kimmel Institute for Cancer Immunotherapy at the Johns Hopkins Kimmel Cancer Center, Memorial Sloan Kettering Cancer Center, National Cancer Center Japan, The Netherlands Cancer Institute, The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, University College London, The University of Chicago, West German Cancer Center/University Hospital Essen, and now Columbia University Medical Center and Peter MacCallum Cancer Centre.

Bristol-Myers Squibb: At the Forefront of Immuno-Oncology Science & Innovation
At Bristol-Myers Squibb, patients are at the center of everything we do. Our vision for the future of cancer care is focused on researching and developing transformational Immuno-Oncology (I-O) medicines that will raise survival expectations in hard-to-treat cancers and will change the way patients live with cancer.

We are leading the scientific understanding of I-O through our extensive portfolio of investigational and approved agents - including the first combination of two I-O agents in metastatic melanoma - and our differentiated clinical development program, which is studying broad patient populations across more than 20 types of cancers with 12 clinical-stage molecules designed to target different immune system pathways. Our deep expertise and innovative clinical trial designs uniquely position us to advance the science of combinations across multiple tumors and potentially deliver the next wave of I-O combination regimens with a sense of urgency. We also continue to pioneer research that will help facilitate a deeper understanding of the role of immune biomarkers and inform which patients will benefit most from I-O therapies.

We understand making the promise of I-O a reality for the many patients who may benefit from these therapies requires not only innovation on our part, but also close collaboration with leading experts in the field. Our partnerships with academia, government, advocacy and biotech companies support our collective goal of providing new treatment options to advance the standards of clinical practice.

About Bristol-Myers Squibb
Bristol-Myers Squibb is a global biopharmaceutical company whose mission is to discover, develop and deliver innovative medicines that help patients prevail over serious diseases.

Most Popular Now

Top 20 breaking World Pharma News of 2017

We are proud to announce the top 20 most popular breaking World Pharma News from 2017. Have a wonderful 2018 new(s) year filled with health, happiness, and spectacular su...

Roche and Ignyta reach definitive merger agreement

Roche (SIX: RO, ROG; OTCQX: RHHBY) and Ignyta, Inc. (NASDAQ: RXDX) today announced they have entered into a definitive merger agreement for Roche to fully acquire Ignyta ...

Novartis advances head-to-head superiority trials …

Novartis announced today the initiation of SURPASS, a head-to-head clinical trial of Cosentyx® (secukinumab) versus proposed biosimilar adalimumab** in ankylosing spondyl...

Antidepressant may help combat the course of multi…

The antidepressant clomipramine may also alleviate symptoms of multiple sclerosis (MS), specifically in its progressive form, i.e. when it occurs without relapses or remi...

FDA updates the label of Tasigna to reflect that c…

The U.S. Food and Drug Administration today updated the product label for the cancer drug Tasigna (nilotonib) to include information for providers about how to discontinu...

Distinct human mutations can alter the effect of m…

Every person has a unique DNA sequence in their genome. Now researchers from the University of Copenhagen and the MRC Laboratory of Molecular Biology in Cambridge have tr...

Zika remains a research and public health challeng…

Since 2016, when Zika was declared by the World Health Organization as a public health emergency of international concern, the virus has become established in more than 8...

Diabetes drug 'significantly reverses memory loss…

A drug developed for diabetes could be used to treat Alzheimer's after scientists found it "significantly reversed memory loss" in mice through a triple method of action...

Try exercise to improve memory, thinking

For patients with mild cognitive impairment, don't be surprised if your health care provider prescribes exercise rather than medication. A new guideline for medical pract...

Arthritis drug could help treat advanced skin canc…

Treatment for the most deadly form of skin cancer could be more effective if combined with a well-known drug for rheumatoid arthritis, new research has shown. The study, ...

Dirt-dwelling microbe produces potential anti-mela…

A type of soil-dwelling bacterium produces molecules that induce death in melanoma cells, research at Oregon State University shows. The molecule is a secondary metabolit...

Novartis Kisqali® received FDA Breakthrough Therap…

Novartis today announced Kisqali® (ribociclib) received US Food and Drug Administration (FDA) Breakthrough Therapy designation for initial endocrine-based treatment of pr...

Pharmaceutical Companies

[ A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Z ]